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Deep Neural Network with Active Learning: Automated Engineering Design Optimization 

for Fluid Dynamics Based on Self-Simulated Dataset 

 

Yang Chen 

 

Abstract 

Designing shapes with high fluid-dynamic performance is an important engineering problem. 

Traditionally experts design shapes based on educated estimations, and use expensive 

simulations to verify their performance. This expensive process, both in regards to time and 

space, can only explore a limited number of shapes, which is a situation that could lead to 

suboptimal design. In this research, we apply a self-designed deep learning architecture to 

predict the performance of various shapes and search for better shapes by optimizing the learned 

prediction function under certain restrictions. The major challenge is that deep learning requires 

a large number of training data, which is costly to simulate. To remedy this problem, we use 

active learning to explore shapes that the deep network finds promising. This significantly 

reduces the number of data samples required. Based on these methods, we find shapes with 

extremely low drag with no human domain knowledge and modest computation overhead. 

 

Keywords: Engineering Optimization, Fluid Dynamics, MATLAB Simulation, Deep 

Learning, Linear Regression, Cross Validation, Active Learning and Efficient Automated 

System. 
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1    Research Background and Its Significance 

 

1.1 Fluid-Dynamics 

Fluid-dynamics is a subject that focuses on the study of moving air or fluid[1]. It especially 

investigates the properties of interaction between fluid environment and solid object that moves 

through the environment[2]. It is important because of its vital applications in fields such as 

aerospace engineering, vehicle production, material science and even architecture design[3]. By 

studying the effects of fluid moving past a solid object, engineers can optimize their designs of 

aerodynamic machines. One core objective in this process is to minimize the drag of solid 

objects under a number of realistic restraints[4]. 

Traditionally researchers optimize aerodynamic design by estimation. Experts design 

shapes based their experience and verifies them in a simulator or wind tunnel. Based on 

simulation results, they pick the optimal shape that has minimum drag. However, such method 

requires personal experience, which means only experts are capable of effectively finding the 

design close to optimized, and have it go through certain tests to confirm the results. Also, such 

results may not even be accurate after several rounds of searching. In general, the overall 

relationships between the shapes and drags are unknown under realistically given restrictions. 

To tackle this problem, we would like to design automatic algorithms that explore and 

design shapes with desired aerodynamic performance.  (Eismann et al) uses Bayesian 

optimization to accomplish this goal. In this work, researchers replace the costly design 

optimization methods which exhaust every required sample with a model-based approach. 

Compared to the usual random search[5], the Bayesian model usedf in this research requires much 
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less sample[6]. Simply put, although this late research in engineering optimization utilizes a 

data-based model to ease the complex enumeration process of samples, while applying Bayesian 

optimization to find desirable aerodynamic design. However, this approach requires a huge 

number of samples to accurately estimate drag, and fails when sample size is insufficient. For 

systems with a high degrees of freedom, it often takes an exponential number of samples to 

evaluate the consequence of each possible design choice. This can be prohibitively expensive.  

This work solves this problem by active learning: we use a deep network to model the 

drag, and draw samples from regions where the deep network believes to be optimal. We only 

explore a very small number of possible design choices, and find shapes with rather low drag 

under given design constraints.  

By design choices, we mean a way to shadow the three dimensional shape into a two 

dimensional graph, and picture a surface based on the following way. We first set an original 

point of the two-d graph, and start from delta = 0 which is a perpendicular dimension. Then, we 

divide the circle around the original point into eight evenly divided dimensions. Each dimension 

would get its own length value. Then, we fit a smooth curve to connect each end of the 

dimensions (the end that is opposite from the original point). Detailed explanation of the method 

will be made further explicit below in methodology section. 
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Figure 1: Graph that is Drawn from the Dimensional Data Produced 

 

As Figure 1 shows above, our MATLAB system would produce a simulation as such for 

further training. 

 

1.2 Wind Tunnel Test 

A common method used to get drag information under different circumstances in real world is 

wind tunnel test (WTT). During WTT, the subject of the test is placed in the tunnel, and air 

propelled by a specialized, huge fan would flow through the subject. Varying instruments are at 

this time used to measure a list of required datas. These datas pull together a whole picture of the 

aerodynamic forces and other physical conditions on the model[7]. 
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The problem of WTT is that it is both time and resource consuming, while the wind 

tunnels are not all that flexible. Firstly, wind tunnels, because of its usual desirable size by its 

nature, have to be built in an almost remote area. Although some subsonic wind tunnels are even 

constructable for private use[8], other wind tunnels usually take up a whole space roughly of the 

size shown in Figure 2 below in order to fit in a large object as the one shown in the figure as 

well as installing a fan huge enough to provide the wind environment[9]. A even more 

troublesome fact of physically using a wind tunnel is the inflexible nature of it. Because of the 

various sizes of the tested objects, and the different wind speeds tests require for distinctive 

projects to create a desired environment, specific projects usually need to face many restrictions 

when looking for a suitable testing site[10]. So the financial cost and the waste of human resources 

are not desirable when industries are using wind tunnels to test object properties. 

 

 

Figure 2: Wind tunnel concept. A picture that illustrates a wind tunnel that tests the stream line design and many 

physical datas of a ship.[11] 
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2.   Research Objectives and Points of Innovation 

2.1 Simulating mesh structure: 

In order to further reduce the computational complexity and sample expensiveness, our study is 

on the application of deep learning and other algorithms in design optimization. 

2.2 Our targets are as following: 

2.2.1 Our research tries to simulate the physical conditions of objects in any given 

condition. Our purpose is to utilize the platform, MATLAB, to create a template that can 

generate physical models that can reduce the costs of actually making desired objects and 

evaluating the attributes of them in reality. We simulate properties of the object with MATLAB. 

We can thus avoid the cost of making the object for real world experiments. 

2.2.2 Our research tries to find a fit for the correlation between θ values, which determine 

the shape of the objects in fluid, and drag values, which stand for the resistance the objects 

encounter in the fluid environment. We take our efforts in using deep networks to maximize our 

accuracy in predicting such relationships, and apply a series of foolproof steps to make sure the 

result is generalizable. 

2.2.3 Our research tries to automatically search for the best shape of the objects under 

provided conditions. Such search automation refers to two parts. Firstly, the machine determines 

when and how to further improve its model for fitting the relations between θ’s and drag’s. We 

set a checking process so that once the algorithm determines that the trend our program has 

found is not actually the optimized case, it will automatically start another round of training with 

certain modifications in some parameters. Secondly, we pre-set a process so that the machine 
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would check itself if it has found the optimized shape. This process basically prevents the 

algorithm of getting into local minimums of the found fit of the correlations between θ’s and 

drags. In total, the two parts act as an active search (AS) which serves for more automated 

process of our system. 

2.3 What is new in our research: 

2.3.1 We utilize MATLAB to create a brand new dataset that includes various settings 

and object shapes. This research starts from the scratch to finally form a program that works to 

make simulations of a diverse group of aerodynamic shapes. This approach is both less 

time-consuming and costly. The machine learning processing later is trained based upon this new 

dataset. Our MATLAB simulation process is made to be accountable and innovative. 

2.3.2 This research raises a new system of algorithm that makes the process of 

engineering optimization as automatic, and computational and sample economic as possible. 

This new system is built upon a fully connected neural network and has other self-determinant 

conditions to decide where the program would go next. In such way, we make sure that the best 

fitting of the correlation between θ’s and drags can be found, while other problems, such as local 

minimum, out-of-the-reasonable-range dilemma and so on, shall be avoided. Besides, since fully 

connected neural network is not the most computationally cheap method, we also set rigid 

conditions before when our program actually decides to retrain the entire model, encountering 

namel problems. These conditions can change parameters in the architecture of the neural 

network to minimize the computational complexity at its best. In summary, our new integrated 

system is designed to make computation-economic, accurate (represented by its minimized loss), 

accountable, non-misleading and foolproven results. 
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2.3.3 The way we apply machine learning in aerodynamic engineering optimization is 

new. In the latest such work that is available to us at the time of our research shows a pretty 

different way of approaching the result (Eismann et al., 2018)[12]. Firstly, the simulation process 

is different. We form our own way of simulating the physical properties of certain fluid 

environments. And our purpose is not to enumerate most possible shapes as the previous work. 

Instead, we employ deep network that describes below to find the correlation between θ and drag 

with a much smaller datasets to predict on an evenly accurate basis. Secondly, the follow-up 

methods to find the optimized shapes are different. The previous research sought for the 

optimization through Bayesian algorithm, while we utilize a integrated searching process to look 

for the best θ values possible in a fit curve that is responded by the least drag values. Therefore, 

the way we search for the optimized engineering design is novel, sample-economic, liable in its 

application. 

 

 

3    Methodology 

 

The core of our research is a fully connected deep network used with an intelligent and 

self-determinant loop that checks pre-set conditions and produces the optimized shape of the 

object under any given circumstance, which is set in MATLAB through process described below 

in the MATLAB simulation section.  
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Figure 3: Flow of the system, procedure outline 

 

Figure 3 shows the flow of our entire process. Our research focuses on making a 

comprehensive system that automatically finds an optimized shape under any given fluid 

environment. To be called a comprehensive aerodynamic optimization, our research covers 

everything needed from simulating objects to actually optimize their shapes. In such way, the 

process of aerodynamic optimization can be simplified and more digital based. 

Detailed explanations of each step is illustrated below. 

 

3.1 Physical Simulation with MATLAB 

Incompressible flow in a volume satisfies the Navier-Stokes equation[13].V  

( u )u) − p ∇ uρ ∂t
∂u + ( · ∇ = ∇ + ν 2

 

In this equation 

1. u represents the velocity of the flow, and is a vector field  for 3-dimensional flowV → R3  

problems, or for 2-dimensional flow problems.V → R2  
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2.  represents the pressure in the volume, and is a function  p V → R  

3. is the viscosity of the fluid[14]. ν  

The Navier-Stokes equation is the equivalent of Newton’s second law for fluids. To 

interpret the equation, we remark that represents the change in the flow with respect to time,∂t
∂u  

and  represents the convective acceleration of the fluid. The right hand side representsu )u  ( · ∇  

the forces acting on the fluid: is the difference between velocity of a point and the meanu∇2  

velocity of its neighborhood. This term encourages the vector field to become uniform in the 

absence of other influence factors.  is the gradient of the pressure, and drives fluid motion.p  ∇   

A deterministic equation govern the dynamics of the system. However, understanding the 

system is still extremely challenging because no closed form solution exists due to its chaotic 

nature. In fact, even proving the existence/non-existence of a solution remains an important open 

problem. Therefore, expensive numerical simulation is required to assess the flow, and compute 

the relevant physical quantities in the system, including velocity, drag, etc. What is particularly 

important in our application is drag: the force an object experiences when it is traveling in the 

fluid.  

We can use MATLAB to simulate the dynamics of an object traveling through a fluid 

environment. This avoid the high cost of manufacturing the object. To simulate the object we 

first create a geometry that represents the object and relevant boundary conditions. Then we 

convert the geometry into a mesh that represents the state of each point in the system. We use 

QuickerSim to simulate fluid dynamics according to Navier-Stokes equation, and read off end 

results including drag through the provided API. Based on this setup, we have a program that 
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simulates the drag for any shape, and we will use it to generate a dataset of shapes and their 

corresponding drag. 

Another important factor to note is the number of datas required in our learning process. 

We require minimum such dataset size which is decided by the formula below: 

(x)n = 2x
 

In this equation, x stands for the number of θ lengths we use to simulate the two-dimension 

dataset that shadow to three-dimensional object, and n calculates the minimum data points 

needed. With this minimum data requirement, we will have sufficient data points to start our 

training. 

 

3.2 Training the Model 

We use two types of models to fit the relationship between shape and drag: linear regression and 

deep network. 

3.2.1 Concepts of Linear Regression 

Linear regression is a significant method to start with, both because of its essential presence in 

the field of artificial intelligence and its fundamental role in my research. Linear regression 

builds foundation for currently existing machine learning regression methods, as it provides a 

elementary assumption to the outcome of the regression model that it is a linear combination of 

the features[15]. Linear regression expresses itself in the form as below: 

 

It is also seen in the form as a matrix: 
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The loss function of such regression method is calculated in terms of the residual sum of squares, 

which is written in the expression as following:  

 

This model is used first to roughly estimate the correlation between the actual drag values found 

through MATLAB simulations and drag values predicted by linear regression model from the 

full set of four-dimensional test θ values. We choose to use such model because of its relatively 

low computational complexity as well as its ability to straightforwardly graph the relationship 

between actual and predicted drag values, if there is any. Also, linear regression serves as a 

traditional method that our new method can potentially compete with. Later in the research, by 

fitting our four-dimensional θ data again with our new model, we can directly visualize if there is 

any veritable improvement in our new model compared to the traditional ones. In short, the 

linear regression model introduced here has its important role to start off the research both by 

visualizing trends with low computational cost and serving as a comparison to our new method 

later. 
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Comparison between real and predicted drags 

  

Figure 4: Linear regression result compared to real drag values, while object width is set to 0.18. Graph produced 

through programming. 

 

Figure 4 represents how the linear regression result fits the real drag values. The red line 

crossing the diagonal of the chart represents the function: 

 

The closer all the blue dots are to the blue curve, the more accurate the linear regression 

prediction is. As is obvious on the graph, most of the data points attach to the blue line out of the 

625 samples, while a few still alienates from the correct prediction. Two things are self 

explanatory in this case. Firstly, the linear regression model does find certain patterns so that it is 

able to make predictions rather accurate, especially in regard of the fact that the graph is zoomed 

in to a 0.40*0.40 square. Secondly, there are still rooms for improvement. In fact, the reduced 
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mean square of the loss function is calculated to be 0.00081 (training) and 0.00076 (testing) in 

the case of the preset width to be 0.15. 

3.2.2 Cross Validation 

My experiment is mostly based on finding the relationship between four-dimensional θ as the 

input dataset and the drags in the aerodynamic environment as the output dataset. Many 

generalization methods, such as L1 and L2 generalizations, are not applicable in this case, since 

there is only one feature, θ, to be taken into account for predicting drag values. However, 

cross-validation still finds its use in our training of the model, especially in the linear regression 

model. Therefore, it is also helpful to introduce the gists of cross-validation alongside other 

methods.  

Cross-validation is a statistic model, also known as rotation estimation, or out of sample 

testing. The method tests the generalizability of certain predictions, which serves our purpose of 

the research well. 

In our research, the entire dataset of 625 θ-drag pairs all directly serve as training datas. 

Every four-dimensional θ has a corresponding drag label. In our case of ten-fold validation, a 

random 10% of our dataset is made complementary subset. The remaining 90% of the datas are 

trained first before we perform testing or validation on the 10% partition. We repeat this process 

for 10 times to cover all data points randomly, so that a better generalization of our linear 

regression training can be achieved. 
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Figure 5: cross-validation and resampling. Figure from Accurately Measuring Model Prediction Error. 

(Scott Fortmann-Roe et al., 2012)[16] 

 

We add this to our linear regression model because a more generalizable result is desired 

to make sure our visualization of the trend is relatable in the future study. Such generalization 

also ensures the result of the linear regression model accountable as a basis for our judgement of 

how drag values respond to different θ’s. 

3.2.3 Fully Connected Neural Network 

We made the prediction mainly through a six-layer fully connected neural network with 

four hidden layers. Different from a convolutional neural network (CNN) that is used to analyse 

two-dimensional pictures either for classifications or automatic generation purpose, fully 

connected neural network (FCNN) is a deep learning method that has each of its layer connected 

to every neuron in the previous layer, with each connection taking its own weight[17]. Although 
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FCNN is more expensive than CNN memory and computation wise, it suits more in the context 

of our research. This is because we want to achieve a more accurate prediction and build a 

self-determinant loop to repeat the process of the neural network until a relatively optimized 

shape is found. In order to enable the automatic searching process and repetition, we need to 

leave weight between every pair of neurons available for retraining in each round so that no 

influential feature would be ignored. 

Furthermore, such more expensive model as FCNN compared with CNN is suitable in 

our case, because our required computation is not as complicated as usual image processing tasks 

for two reasons. First, as stated above in the MATLAB simulation explanation, we only require 

625 samples to reach a fair prediction that is generalizable. This number is significantly smaller 

than that of digital image processing which usually desire around 10000 two-dimensional 

samples. Moreover, our input datas consist of a list of arrays, which has a lower computational 

cost than two-dimensional images. Therefore, because of the remarkably lower computational 

cost as a nature of our dataset, FCNN is feasible. Thinking of the advantages and necessities of 

using FCNN, we chose to use it to fit the model. 

FCNN is composed of fully connected layer (FC) which can be expressed in the 

following form: 

 

K represents a specific layer of the FCNN, while j represents the specific neuron the denoted 

variables are referring to. W serves as a parameter that tells the connection between the jth 

neuron on kth layer and the ith neuron on (k-1)th layer, alongside b as the bias adjuster. As the 

shape indicates, FCNN can somewhat be regarded as a CNN in computation or thinking. 
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The formula can be extended to look something as the series of equations below: 

Z(1)
 =f(1)

 (W(0)
X+b(0)

), 

Z(2)
 =f(2)

 (W(1)
Z(1)

 +b(1)
), 

... 

Z(L)
 =f(L)

 (W(L−1)
Z(L−1)

+b(L−1)
) , 

Yˆ ( X )
 = W (( L )

 Z ( L )
 + b ( L ) 

). 

The six layers of fully connected neural network are as pictured in Figure 6. This 

architecture is chosen because of its superior accuracy of performance compared with the other 

kinds. For example, in the case when we set the preset width of subjects in MATLAB 

simulations to be 0.15, the reduced mean squares of prediction losses are lowered to 0.00029 

(training) and 0.00019 (testing), while those in linear regression case accordingly are 0.00081 

(training) and 0.00076 (testing). 

 

 

Figure 6: Neural network architecture in my research. Drawn on python by programming. 
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Figure 7: Visualization of how two-dimensional θ datas relate to drags 

 

Also, we attempt to approximately visualize how θ would project to drags which has its 

representation graphed above in Figure 7. In common sense, we would easily come to the 

assumption that we should approach θ’s in all dimensions of the objects to 0 to minimize the 

drag. This is not the whole picture. In reality, with many restrictions, we usually need to preset a 

width value for the object and then look for a best shape with the preset condition. In Figure 7, 

we see that there usually exists optimized values of θ’s beyond just approaching zero all the time. 

For instance, in the two-dimensional visualization, we reach the minimum drag when the height 

is between 0.10 and 0.15 if the width is set to be 0.15. So later, when we use the network to 

predict how four-dimensional θ values correlate to drags, our purpose is to find such feasible 

minimum with the network. 

3.2.4 Rectified Linear Unit 
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As the fully connected network is being trained, weights and biases between each pair of 

neurons are defined as variables. With real drag values as task targets to achieve through model 

prediction, the network is able to train itself to find weights and biases for minimized loss. 

In the process of training, we need suitable activation functions. In our case, one 

activation function is rectified linear units (ReLU), calculated through the expression below: 

[18] 

ReLU is a fairly popular kind of activation function in neural network. 

 

 

Figure 8: ReLU activation function, Dan-Ching Liu et al. [19] 

 

Figure 8 shows a general shape of ReLU function. Compared with other activation functions, 

such as sigmoid, tanh, and linear, ReLU is a single-sided function. It satisfies the mechanisms of 

neural network better. ReLU has a constant-valued slope when  so that it does not have 

sigmoid’s predicament of vanishing gradient. In the case of ReLU, only multiplications and 

comparisons are processed so that we may achieve a faster and more accountable convergence of 
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results. Furthermore, in practice of our research, ReLU is able to reduce the loss of our 

predictions on a perceptible scale. 

ReLU is used in a convolutional way through the fully connected neural network that has 

been introduced in the previous section. 

 

3.3 Automated Search for Drag-Reduced Shapes 

When the search of a drag-minimized shape runs into a local minimum or when the initialization 

of the training leads to a zero-derivative, the prediction result is not in its most accurate case. So 

we need another process to 1) have the machine automatically adjust its parameters so that such 

local minimums and zero-derivatives can be avoided; and 2) make sure the found optimized 

shape actually encounters the minimum drag. 

3.3.1 Restrictions for Self-Adjusting Parameters 

Generally speaking, two parameters determine the way our model trains itself: train step and 

variable initializations. In the case of following conditions, our model would automatically 

determine to retrain itself: 1) when the taken derivative is found to be zero; or 2) the model is 

found to be stuck in a local minimum. Specific restraints we set are explained in the following 

sections. 

3.3.2 Check for Decreasing Loss 

During the first round of train, the model is trained three times, with the train steps being 1e-3, 

1e-4 and 1e-5, which are tested to be the number of train steps by which our model would most 

likely find the trend this research is looking for. Each training process is trained for 20000 train 
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steps, because most training cases will reach its peak by this number. For instance, when the 

width of the objects is set to be 0.18, prediction loss has the trend as is illustrated in Figure 9. 

 

Loss Convergence Conditions 

 

Figure 9: Loss convergence conditions, this graph shows that the convergence of loss through the training of 20000 

effective train steps. Generated by programming on python. 

 

As is indicated by Figure 9, the loss of 0.18-width objects converges to have a 0.000293707 

predicted loss. Moreover, the losses are consistent around the value 0.0003 after 12000 train 

steps, so the remaining steps serve as foolproof for unexpectedly large desire of train steps to 

reach minimum.  

After the first training round, there are two other possibilities, however, if not a single 

final optimized case is found, which are elaborated below: 
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Figure 10: Flow graph of automatic training system. Detailed explanations are given below. 

 

Firstly, there may exist no reasonable loss convergence in our tested cases. We create a 

mechanism to compare the loss condition each step. If the loss does not decrease in a reasonable 

distribution or is not reduced at all, the mechanism will send its judgement for our system so that 

it will start another round of training. In this round, the two train-step cases are le-2 and le-6, and 

so on until there is a reasonable convergence of loss. However, in some cases, it is also possible 

that there is no liable convergence until it is out of the range for logical train step sizes. At such 

time, the system would automatically refresh its initializer so that there is a new initialization to 

avoid zero derivatives. 

Secondly, too many reasonable convergences will be produced in the first round (a.k.a 
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two or three reasonable convergences). In this case, our system is programmed to compare both 

accuracies and stabilities of the convergences. To collate the performance accuracies, we 

juxtapose each of the test and train accuracies in each plausible training, and find out which 

convergence has the best general performance among all. To compare the stabilities, we take the 

difference between the level of test and train accuracies of each reasonable convergence 

respectively. Then, we compare both train and test accuracies in each of the reasonable 

examples. The one that maintains relatively better train and test performances would be selected. 

While the accuracies and stabilities contrast with each other, accuracies would always be the 

prior factor of judgement. 

3.3.3 Check for Drag-Minimized Shape 

After the overrounded model training, the resulting shape predicted is still not necessarily the 

best outcome possible. This may be owing to undesirable initialization, incomplete fit of model 

and many other factors. To prevent these instances become our outputs, we design a last step to 

check if it is drag-minimized. 
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Figure 11: Flow graph of double checking result. 

 

As Figure 11 above illustrates, our last step of the system is to automatically check if the 

found optimized shape actually have the minimized drag in the given environment. The 

mechanism basically works as following. Firstly, the found shape’s drag is compared with the 

rest of the examples in our initial dataset of 625 drag values. If it is the smallest, it will be added 

to the original dataset and feedback to the training system for retraining. After the retraining, if 

the shape is actually also the global minimum in the new model, then it will be selected. If not, 

the new global minimum will be used for the new round of active search. Also, if the found 

optimized shape’s drag is not in fact the smallest compared to the present drag values, then the 
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found value will also be added to the training dataset. Our system would determine to get another 

round of retrain until a veritable drag-reduced shape is ensured. 

 

 

4    Results 

 

4.1 Deep Network Regression Performance 

Our own dataset is primarily the center of our investigation. Pretraining selection firstly take 

place to eliminate those simulations that is too close to singularity or off-scale to be for 

meaningful consideration. Selected 625 samples (the specific number is due to the reason stated 

above) with reasonable shapes are then fed into linear regression model for visualization 

purpose. This linear regression process is accompanied by the use of 10-fold cross-validation to 

make sure the visualization through linear regression is accountable and generalizable. The result 

of the traditional regression model clearly shows that there exists a correlation between the 

predicted drags and real drags, so that there should be an anticipatable trend between different θ 

values and drags. At this point, more accurate predictions of drag values from θ’s are desirable. 

So, we develop a deep network built upon 6 fully connected layers which shows an optimized 

accuracy compared to the peers. Table 1 below shows some examples of comparisons of 

performance: 

 

Table 1: Performance of different deep network architectures for regression loss 

 Train Loss 
(0.15 width) 

Test Loss (0.15 
width) 

Train Loss (0.18 
width) 

Test Loss (0.18 
width) 
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Seven Layers 0.00071 0.00057 0.00085 0.00041 

Six Layers 0.00060 0.00046 0.00085 0.00041 

Five Layers 0.00389 0.00352 0.00135 0.00086 

Four Layers 0.00135 0.00124 0.05154 0.05045 

 

With two width cases * four types of deep network architectures, the total eight total 

different cases picture where the optimized deep learning architecture can be achieved. As there 

are more examples of different cases already tested, there is a common trend is represented by 

the two set of examples in Table 1. Six layer deep network has significant improvement of 

performance in terms of mean squared loss (both training and testing) compared to other 

architectures with fewer layers, while another additional layer shows no perceptible reduction in 

loss (both training and testing) in the case of 0.18 width but increases the mean loss in the 0.15 

width case. Therefore, compared with fewer layers, six-layer deep network has superiority in its 

notable reduction of mean loss. As for more layers, six-layer architecture is no less accurate but 

less computationally expensive. Therefore, such architecture is selected. 

Compared with traditional regression models, moreover, our deep learning model 

explicits its superiority in performance as is shown by the comparison in Table 2: 

 

Table 2: Performances of different models 

 Linear Regression Our Model 

0.15 Width Case Training 0.00081 0.00029 

0.15 Width Case Testing 0.00076 0.00019 

0.18 Width Case Training 0.00101 0.00085 
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0.18 Width Case Testing 0.00078 0.00041 

 

In both width cases and more, our deep learning model with its project-specific architecture is 

proven to be superior in prediction accuracy in comparison with other traditional regression 

models. 

 

 

Figure 12: Loss distribution in the case of 0.15 preset width 

 

Figure 12 visualizes the distribution condition of a well trained, applicable model. Under 

this condition, datas start to look statistically correct. As the red curve pictures out, the 

distribution of each individual prediction loss distribute in normal distribution, skew to the right 

with most loss in between 0.00 and 0.02. This graph tells both the stability and accuracy of the 
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model at current status, which means, at this point, this case of width is already well trained for 

preceding to the next phase. 

Our model does not take in other methods in the predicting process. One the one hand, 

the potential improvements are largely limited. As for stacking of multiple different machine 

learning methods, there can be only tiny to no boost to the accuracy. This is due to the 

mechanisms of how stacking and ensembling work: the efforts to remove unshared shortcomings 

of each method. Therefore, the possible improvements are usually ignorable. As for the chances 

of better accuracy because of the nature of other methods themselves, other methods generally 

show less accuracy compared to ours in terms of accuracy proven by direct comparisons of 

performance. One the other hand, the possible enhancements are not necessary. Sost drag values 

that our simulation system would get are above 0.30, while our system has already reduced the 

mean loss to the level mostly below 0.00050, so further advancements are not seen as critical. 

So with many factors taken into account, our deep network with five fully connected 

layers is concluded as the most accountable model with comparably consistent performances and 

high level of accuracies in both train and test. This architecture improve the loss of our 

prediction to be generally under 0.0005. 

4.2 Automated Engineering Optimization Performance 

The performance of our generation of the optimized shape indicates the ultimate use and 

practicality of our research. Our design of the active search again boosts the automation of our 

system. When the search of a drag-minimized shape runs into a local minimum or when the 

initialization of the training leads to a zero-derivative, the prediction result is not in its best case. 

Our system would avoid such conditions.  
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Figure 13: Simulation reflection of the predicted optimized shape after first round training. 

 

For example, during our train of the case when width value is set to be 0.15, the 

optimized case is not achieved in the first round of judgement. In Figure 13, the graph on the left 

is the residuals convergence plot. The plot on the right shows the relative movement between the 

object and its surrounding environment. The color bar on the right of the plot assists to read the 

graph. Pretty self-explanatory, sections round the object have almost zero relative movements 

against the object,  while further areas have higher speed of movements. These two in total serve 

as our base for predicting drag values. In this first effort to optimize, drag is shown to be 0.394, 

which apparently is not indeed optimized and is captured by our mechanism. So it automatically 

goes into the second round of training, that reports the result below. 
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Figure 14: Final selected, optimized shape and its simulation. 

 

The two plots above in Figure 14 work the same way as Figure 13. After few rounds of 

active searches, our system automatically comes to the shape in Figure 14, which has a drag of 

only 0.281. This result is then proven to be the actual minimum, tested by our series of foolproof 

processes that are already explained in methodology section. 

This instance is quite exemplary because it encounters most bugs that our training system 

can have and proves the reliability of our post-training selection process. This reliability is 

similarly observed in other cases with widths of 0.18, 0.20, and 0.30. 

 

 

5    Discussion 

 

5.1 Summary and Expectations: 
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The deep learning architecture design in this research is superior in its accuracy and stability 

performance compared to linear models. It further reduces the loss of prediction on a perceptible 

scale compared to traditional regression models, such as linear regression. According to the data 

visualized above, it is clear that our model is able to predict the relationship between θ’s and 

drags accurately and precisely. This result shows that our solution to find a fit for the correlation 

and then find the global minimum in this fit is feasible and our model has a higher performance 

than traditional ones in the experimental conditions that we set in methodology simulation 

section. The detailed comparisons between our model, and traditional models and other 

architectures are drawn in the result section above in Table 1, Table 2, and Figure 12. 

5.1.1 The application to use a machine learning model to find a fit for the correlation 

between θ’s and drags is new to this research. The way our data works also optimizes the use of 

computation power. We map a matrix of four-dimensional θ arrays to a column vector of 

one-dimensional drags, instead of finding the fit of the entire process of objects moving through 

given fluid environment. In our way, a relatively accurate result only requires a small data size as 

described above. To make the case of prediction more comprehensive, one way is to add more 

dimensions to θ arrays. Under that circumstance, an important additional step is to set restrictions 

to utilize projections to make sure the shape would be reasonable (a.k.a. No weird indentations in 

the shape). Also, it would require a bigger dataset with approximately 2^n data points (n stands 

for the dimension of θ), so a heavier computational cost. 

5.1.2 Our optimization system has rather well-rounded loops to filter cases not yet fully 

trained. We make sure that our system actually find the optimized shape with the provided 
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information (e.g. simulated dataset size, model fit from the datas and so on). This also means that 

our system has the ability to avoid bugs in usual machine learning training. 

5.1.3 Another rather significant, potential boost to our research is to make the fluid 

environment more complex. Now, we simulate under only viscosity and some primitive elements 

of fluids. Nonetheless, for designing aerodynamic devices, a more complex factor of influence is 

the wind, which is the key point why wind tunnels are still necessary. At this point, we are still 

short of samples that can provide information of actual wind tunnel experiment results. With 

sufficient samples from those wind tunnels, in fact, we can find a trend on how wind affects the 

engineering performance. As more such examples are used for more accurate prediction on such 

relationship, our idea of research is capable of further lessening our dependence on wind tunnel 

experiments. 

5.1.4 Our research is highly applicable in real life. For the making of an optimized shapes 

for cars, spaceships or even tiny injection devices, aerodynamic engineering design would find 

its use. Our system applies machine learning models to find how the factors of influence would 

impact the performance of objects in the fluid, and search automatically for shapes that can 

accomplish their purposes the best. The greatest benefits of searching for the optimized shapes 

through our proposed method instead of the traditional counterpart are our system’s low resource 

and time consumptions. 

 

5.2 Proposed Future Extensions: 

Digging deeper into the study by adding more complex critical elements and looking for 

complex trends from previous wind tunnel testing samples is one prospective extension as 
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referred to above in 5.1. However, following may also serve for the potential improvements of 

our system. 

5.2.1 We may need to add other necessary restrictions to the objects themselves. For 

example, because aerodynamic machines usually have few specific purposes, we need to set 

minimum volumes of the objects, or sometimes minimum length on certain θ values so that their 

functions can be achieved. Therefore, to better make objects for specific tasks, we also need to 

specify restrictions for the optimized shapes we are looking for in future studies. 

5.2.2 The integration of multiple aerodynamic objects shall also be studied. This happens 

when, because we sometimes need to set restrictions for shapes that we are optimizing to serve 

for specific tasks, the ultimate shape we get may not be close at all to the original global 

minimum of drag of our trained model. So, supplementary parts may be used to boost the 

engineering performance of the shape. Consequently, a method of finding such appropriate 

add-ons may be studied to include into our system. 

5.2.3 Now we only have a general purpose of reducing the resistances of the objects 

travelling through a certain fluid environments. However, for specific tasks, we may also desire 

other features. For example, ability of an object maintaining its current height, stability or agility 

of an object. With varying purposes of the optimization, these conditions can be set into the 

MatLab environment to be run through and tested the same way as we do on the drags. 

 

 

6    Conclusion 
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In the end, our research successfully demonstrates that a more systematic and automatic 

aerodynamic engineering optimization is feasible by getting a regression mean error at below 

0.0005 for most preset width cases and achieving actually drag-reduced shapes with the fit model 

through our systematic model. Compared to the previous researches, we have the advantages of 

requiring less training samples, less computation costs and time while improving the automation 

of engineering design and avoiding training bugs. On top of what we have already done, detailed 

additions as described in the discussion section is able to further increase the comprehensiveness 

of our system. These future bonus shall be achieved in a pretty similar way as we do here with 

the drags, except with different simulation features. 

Our research successfully innovates on two things: finding a trend that relates to drag 

values, and searching for a drag minimized shape. This provides a insight into how drag is 

influenced by objects’ shape with merely our machine learning prediction. This process can be 

more straightforward and practical than other methods that attempt to find such correlation. 

In the future, more features should be studied the same way as the drags so that other 

feature-specific tasks can also be sought out. Also, real datas from wind tunnel tests will also be 

helpful in the future for us to train out trend of the impacts of more complex features that 

MatLab can hardly simulate. With these extensions, our automation system shall be made more 

comprehensive for improving aerodynamic shape designs. 
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