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Abstract
Structural variations (large scale variation) in genome could be

more critical than SNP (Single-Nucleotide Polymorphism) in resulting in

tumor cells, immune system diseases and fatness[1~8]. It is necessary and

important to detect structural variations with next generation

sequencing data by means of efficient and accurate algorithms. This

paper introduced a new algorithm using k-mers (short fragments of

genome) and graph algorithms, which combines variation detection and

sequence assembly. Our results showed that our method is more reliable

than methods using reference and more efficient than brute force

search.
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1. Introduction

Next generation sequencing technology provides us with large

quantities of genomics data[9,10]. The raw data we can obtain is a massive

number of reads. Adapting to the data’s characteristics, many

researchers have achieved encouraging results with reference genome,

such as COSMOS[11] and SV-Bay[12] . SV-Bay[12] is an algorithm which uses

reference and a combination of Bayesian model and clustering to detect

SVs. COSMOS is an algorithm using mapping, clustering and checking of

sequencing depth to detect the SVs.

There are certainly problems that methods using reference may

cause. The most serious one comes from the difference in human ’ s

genome. Currently, the references we use are from limited people. If we

want to use their genome and regard theirs as the normal ones, hoping

that this method can treat another person, it is hard to figure out what

are SVs and what are polymorphic differences.

Methods that do not use reference are needed. SMUFIN[13] is an

algorithm developed by a research group in Spain. It use both normal

and abnormal cells from the patient and directly sequence and construct

a “Quaternary sequence tree ” to quite violently detect the difference
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between them. It is very time consuming and its consumption could be

seen in the paper of COSMOS[11].

K-mer[14~15], is the name of short sequences that contain k bases.

k-mers are widely used in feature recognition of biological information.

In this paper, we use k-mers to detect variations and assemble the

genome.

Sequence assembly[16~18], is a technique uses reads to construct the

whole genome[18]. Currently, methods based on the next generation

sequencing mainly use three strategies[18]: Greedy,

Overlap-Layout-Consensus(OLC) and De Bruijn graph[19].

De Bruijn graph[19] is a kind of graph whose nodes represent

sequences which include k bases of the read and edges represent their

neighborhood relationship. To construct the whole genome, we do some

modifications on this graph and find Euler paths on the graph[18]. Based

on this theory, many softwares such as SOAP[20] were developed.

We developed a method using k-mers to detect SV, SNP and

assemble the genome.

The method is:

1. A reliable algorithm, for it does not use any reference genome to

ensure it will not be affected by polymorphic differences.

2. An efficient algorithm, as is shown in “3.Comparison with another
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method” , it can use less memory and ensure sensitivity and specificity

with a higher speed.

3. An accurate algorithm, as is shown in “4. the result of test

running” , it achieved a 99.926% successful rate in similarity check and a

high percentage of successful identification of structural variations.

2. Method

Similarity check:
Hash
Mapping
General similarity calculation
Similarity under the

assumption of structural
variations

Find adjacent
reads with the
de Bruijn
graph[19]

Definition of variation type and
location:

K-mer location definition
KMP and DP optimization

similar

not similar

Primary check

Input:
Normal reads and tumor reads

Output:
Structural variations and Genome

(Figure 1) The process of the algorithm

Genome
construction[20]:

Constructing de Bruijn
graph[19]

Modification on graph
Find Euler Path



- 7 -

As input, we use normal reads and tumor reads from the same

person in order not to be affected by polymorphic differences. We will

firstly check the similarity between reads and construct de bruijn graph.

Part of reads that have their similar reads will directly go to the

procedure of finding structural variations. We will find the adjacent reads

of other reads and identify the structural variations. As we construct the

whole genome, we can mark the structural variations on the genome

and output the results.

Each of the procedure that are mentioned in the previous

paragraph contains many steps. These steps are shown in the figure

above and will be discussed in the following chapters.
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2.1 Similarity check

We will first check the similarity between tumor reads and normal

reads for detection of structural variations.

2.1.1 Data processing

Information of reads from next generation sequencing platforms

differ from one software to another. In our research, we use ART[21] , a

simulator of next generation sequencing data to generate reads in

different regulations. It can generate reads in the regulation of Illumina,

SOLiD , 454,etc. Also, Bowtie[22,23], a memory-efficient short read aligner,

can map reads to the reference and provide mapping results.The two

softwares is of great importance to data simulation[24] and testing.

When it comes to the next procedure, we refer to different

information form , extract the reads from the data and turn them into

our preferred form . For example, SAM(Sequence Alignment/Map) [25] is a

popular format. We would like to extract the read itself and its position ,

sum of flags and mapping quality from the SAM format data.
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2.1.2 Hash

From next-generation sequencing platforms, we get normal reads,

which are from normal cells of the patient, and tumor reads,which are

from the tumor and mutated tissue of the patient.

Using hash technology, we mark several hash values of a read. They

would be calculated by the reads itself and the sequences without one

base (and two/three bases) at its beginning and sequences without one

base (and two/three bases) at its end.

For a DNA sequence S, we use Si represent the number

corresponding to its i-th base and len(S) represent its length.

Corresponding number:

A(Adenine) 0 (002) T(Thymine) 1 (012)

C(Cytosine) 2 (102) G(Guanine) 3 (112)

Its hash value:

pkSS
Slen

i

islen
i mod*)(H

)(

1

)(



.

Consider the possible rare or unknown base and the U(Uracil)base,

we let k=6 for the compatibility reason. P is a big prime number.

(Table 1) The corresponding number of base in DNA
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When two reads have the same hash value, we will check whether

their sequence is similar. With this procedure we can quickly identify

highly similar reads which have the same bases in a large scale.

2.1.3 Mapping

In order to avoid the situation that too many single-nucleotide

mutations (SNPs) have negative effect , we can use mapping to directly

find out the similar reads which are the same except for one or two

bases.

Each arrow will move from one side to the other side. If the

same-side arrows of two reads reach the same base, they would check

the next base. If not, they will later skip them and mark this place as a

difference. Each arrow have one (or two)chance to skip. If the two

arrows can finally meet, we can consider two reads similar .

C A GA C T ……

G A GA C T ……

C

G

(Figure 2) The mechanism of the mapping procedure
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Mapping is an essential procedure to find single-nuclotide mutation

and simplify the later calculation.

2.1.4 General similarity calculation

2.1.4.1 k-mer cutting

In the calculation of general similarity, we first cut reads into k-mers.

In my source code, the lengths of k-mers are from 1 base to φ times the

length of the whole read (integer). Take a 50-base-long read and

0.618 for example ,we will have twenty 31-base-long k-mers,

twenty-one 30-base-long k-mers, …… ,49 two-base-long k-mers and 50

single-base k-mers.

The number of k-mers would be:




)(

1)()(

Slen

SlenSleni
i

 .

In the formula above, len(S) represent the length of the read, φ

represents the ratio of the length of longest k-mer to the length of the

read.
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2.1.4.2 Find the different k-mers

We sort the k-mers we cut in a specific order. And find the different

k-mers between reads.

Definition of different k-mers: k-mers that exist in read A but not in

read B, including k-mers that occur different times in the two reads.

We then compute the percentages of the number different k-mers

to the total number. The percentages are computed in different length

respectively.

The general similarity based on k-mers can be calculated as:

 k

Slen

Slenl

k
ll wp




)(

)(
)1(

 .

Pl is the percentage of the number of different k-mers to the total

number in the length l. Wl is the weight of this length. Wis could be all

1.0 or have an ascending pattern. K is an essential parameter, related to

the sensibility of the general similarity calculation . When k become

smaller, it will more sensitive when there are some extreme numbers.

We set a threshold value θ for the general similarity , if the number
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we calculate is large than the threshold value θ, we would consider two

reads similar.

It is worth noticing that, in order to avoid the situation where the

number of k-mers are quite different between two reads due to the

difference in length, if the original different k-mers explain most of the

differences in the k-mers, we would consider two reads similar.

2.1.5 Similarity under the assumption of SV

Because the possibility that there is more than one SV in a single

read is low, we can assume that there is only one or no structural

variation in a read. Though we accept this assumption and so design our

algorithm, there is still a large possibility that the algorithm can identify

two or more SVs in one read.

As we have already accepted the assumption, there are different

kinds of k-mers.

4
3
2
1

Mutated sequence

(Figure 3) Mutated k-mers generated from mutated sequence



- 14 -

The middle red zone represent the mutated area of the read. The

k-mers lies in the non-mutated area are not drawn in the figure. There

are four kinds of unusual k-mers:

1.Part of its end locates in the mutated area;

2.Part of its beginning locates in the mutated area;

3.All of it locates in the mutated area;

4.It overlaps all the mutated area.

2.1.5.1 positive and negative direction tree

Type 2 and 4 k-mers

We construct a trie tree[26] in the positive direction, for the goal to

find and rule out the type 2 and type 4 k-mers. In this tree ,each node

represent a base , each edge connects the previous base and following

base in the positive direction. There are also special edges which

contribute to the calculation of the estimation value.

In order to find type 2 and type 4

k-mers, for each node we have an

estimation value which consider the

length in the previous non-mutated

zone and the number of k-mers which

A

TC

G

C

G

G

C

Example k-mers

ACG

ATC

GCG

(Figure 4) Positive-direction tree
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include the base represented by the node.

Its estimation value :

k
Cnt
W

Dep
W

WW
nl

nl





)( .

Dep is the depth of the node. Wl is the weight of the length which is

particularly the depth of the node.Cnt is the number of k-mers that have

the base represented by the node.Wn is the weight of the number of

k-mers.

In the formula above, k is an essential parameter to prevent the

situation where the depth of the node which is also the length of the

chosen non-mutated area in front of the mutated area too long from

happening. When the depth of the node increase, k will become larger

correspondingly.

Like false link in AC-automaton(Aho-Corasick automaton)[27], we

construct special edge (the red one in the figure above) to connect

nodes which satisfy the following requirement : the whole sequence

represented by one node is a suffix of the sequence represented by the

other node.

So the estimation value could be written as:














)()(
tCn

W
pDe

W
WWr

k
Cnt
W

Dep
W

WW
nl

nl

nl

nl

.
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Dep’ and Cnt’ is the depth and the number of k-mers respectively

of the node connected with this node by a special edge and its sequence

is the suffix of the sequence represented by this node. R is the

parameter to mainly weaken its contribution to the calculation.

The sequence with the highest estimation value would be consider

as the non-mutated area in front of the mutated area. All k-mers whose

prefix is the sequence represented by the node which also are k-mers

overlap the base represented by the node will be ruled out as type 4 and

type 2 k-mers. These k-mers will not take part in the later computation.

Type 1 k-mers

The method we use to find type 1 k-mers is similar to the method

we use to find type 2 and type 4 k-mers.

We construct a trie tree[26] in the negetive direction. In this

tree ,each node represent a base , each edge connects the following

base and previous base in the negative direction. There are also special

edges which contribute to the

calculation of the estimation value.

Like the special edges in

positive-direction tire tree, we

construct special edge (the red one in

the figure) to connect nodes which

A

TC

G

C

G

G

C

Example k-mers

GCA

CTA

GCG

(Figure 5) Negative-direction tree
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satisfy the following requirement : the whole sequence represented by

one node is a prefix of the sequence represented by the other node.

The estimation value could be also written as:














)()(
tCn

W
pDe

W
WWr

k
Cnt
W

Dep
W

WW
nl

nl

nl

nl

.

The meanings of W , Dep , Cnt, k and r are the same as the positive

direction tire tree. Dep’ and Cnt’ is the depth and the number of k-mers

respectively of the node connected with this node by a special edge and

its sequence is the prefix of the sequence represented by this node.

If the sum of the length of the chosen sequence in the

positive-direction tree and the length of the current sequence

represented by the node is larger than the whole read. The estimation

value of this node in the negative-direction tree would be replaced by a

negative number. And we will not consider this node and nodes whose

sequence’s length larger than it.

The sequence with the highest estimation value would be consider

as the non-mutated area that follows the mutated area. All k-mers

overlap the base represented by the node will be ruled out as type 1

k-mers. These k-mers will not take part in the later computation.
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2.1.5.2 Inclusive relations of k-mers

Type 3 k-mers

In order to find type 3 k-mers, we adopt another approach. Since

we have already found the non-mutated area in front of and behind the

mutated area , and ruled out the type 1,2,4 k-mers. It means that nearly

all k-mers we have is located exactly in the mutated area.

We will check the inclusive relations among the left k-mers to check

whether the reads are similar.

Data processing

In the procedure that we generate k-mers from the read, with the

optimization that we divided the procedure by the length of k-mer and

k-mers have inclusive relations in the read, we can have a graph which

shows the inclusive relations of the k-mers.

Pseudo-code:

For i = 1 to φ* len (S) { //length

For j = 0 to len(S) - i + 1 { //location in the read

Register_k-mer (location j ,length i)
Construct_edge (current k-mer, recorded k-mer)
//construct edge represents inclusive relation

Update_record(current k-mer,location j,length i)
} }
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We construct a graph with the procedure above, and sort the edges

in a specific order in the graph.

Ideal number of edges

In the ideal case, all k-mers we left have the ideal inclusive relations.

For one k-mer(not located at the edge of the mutated area ), it is

included in two k-mers whose length is one base longer than it (except

for the longest one) and it includes two k-mers whose length is one base

shorter than it(except for the one-base-long k-mers).

In the figure above , rectangles represent k-mers. The middle

rectangle is the k-mer we discuss in the previous paragraph. The arrows

represent the inclusive relation.

If the k-mer is located at the edge of the mutated area. It will be

included by only one k-mer whose length is one base longer than it.

There are two calculation method for the ideal number of

arrows(inclusive relations).

(Figure 6) Inclusive relations between k-mers
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Method one :

Method one is based on the length of the expected mutated area.

The longest k-mer includes two k-mer, two k-mers included by the

longest will have four inclusive relations with three k-mers whose length

is one base shorter than them. Finally, the (n-1) two-base-long k-mer

have (2n-2) inclusive relations with the single-base-long k-mers.

So the ideal number is:






22

2

n

i
i

, and it can be simplified as nn 2
.

n is the length of the expected mutated area.

Method two :

Method two is based on the number of the left k-mers.

Let n’ be the length of mutated area calculated by the number of

k-mers (N) .

N and n’ have the following relation:

2

2

1

nniN
n

i







, that is nnN  22 .

So we have an equation 022  Nxx , let x be the positive

solution of the equation. The ideal number of inclusive relations is:

)(2222 xNxNxx  .
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With the ideal numbers calculated by two methods , we can set an

acceptable interval for the actual inclusive relations.

Assumed that two ideal numbers (a and b ( ab  ) ) are two ends of

an interval which overlap a certain length(percentage) of our final

acceptable part and , then (b-a) and the length of the acceptable interval

satisfy lab  )( . φ is the ratio of the distance between a and b

to the length of the interval. Moreover, if we assume the interval

between a and b is in the exact middle of the acceptable interval, then

the acceptable interval can be written as








 















 abbaba

2
1,

2
1

.

And it can be simplified as








 






2
)1()1(,

2
)1()1( baba

.

If the inclusive relations between the k-mers is in the acceptable

interval , it indicates that our left type 3 k-mers satisfy our expectation,

two reads are similar under the assumption of structural variations. If

not, two reads are probably not similar though we have assumed that

there would be structural variations.
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2.2 Definition of variation type and location

There are various kinds of structural variations. But most of these

variations could be considered as some combinations of several basic

structural variations such as insertion , deletion , translocation, inversion

and CNV(copy number variation)[28]

Insertion, is a variation which will insert a sequence in the normal

DNA sequence. Deletion is a variation which will delete a sequence

from the normal DNA sequence. Translocation is a variation which will

make a sequence leave its previous location and insert in another

location. Inversion is a variation which will invert a sequence . CNV

is a variation which will change the copy number of a certain sequence.

Insertion ACTAGCAG—>ACTAGCATGCAG

Deletion ACTAGCATGCAG—>ACTAGCAG

Translocation ACTAGCATGCAG—>AGCATCTAGCAG

Inversion ACTAGCATGCAG—>ACTATACGGCAG

CNV ACTAGCATGCAG—>AGCTAGCATGCGCATAG
(Figure 7) Examples of simple structural variations
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2.2.1 k-mer location definition

Since we have had the k-mers from reads, it is efficient and accurate

to detect the variation type and location through k-mers.

We adopt a method which firstly check the location where the

k-mers can be mapped in the reads , and then construct a graph to show

the location relation of the k-mers.

It is unrealistic to map all the k-mers with various length on the read

because of its high consumption. It is accurate and efficient to check

k-mers with several lengths.

We will map 3-5 kinds of k-mers for the goal to detect structural

variations. The length of k-mers are 1, 3, x, y, 
4
1 the length of the

read, respectively. The value of x and y can be defined by the user, and

satisfy readtheoflength ___*
3
1yx3  to guarantee that the k-mers

are useful.

Having known the relation between k-mers and the location in the

read, we will begin to identify the variations.

CNV(copy number variation): there are distinct number variation in

the locations that a certain k-mer or a few k-mers can be mapped . At

the same time ,other k-mers can be quite perfectly mapped to the

corresponding locations.In this case, the type of variation can be defined

as CNV.

Insertion : there are distinct gap where there cannot be the location
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for some long k-mers to map, while k-mers can be quite perfectly

mapped to other corresponding locations. In this case, the type of

variation can be defined as insertion and the location is clear.

Deletion : there are k-mers cannot be mapped to any places

reasonably , while all locations can be places for other k-mers to map . In

this case, the type of variation can be defined as deletion and the

location is clear.

Translocation : distinct changes take place in the location for certain

k-mers to be mapped while other k-mers can be quite perfectly mapped

to corresponding locations .In this case, the type of variation can be

defined as translocation and locations of disappearance and insertion

are clear.

Inversion: in order to detect inversion, we first invert the k-mers and

search place for them to be mapped again. If there are corresponding

places for inverted k-mers to be mapped while other k-mers can be

mapped to corresponding locations, the type of variation can be defined

as inversion and the location is clear.

2.2.2 KMP[29] and DP[30] optimization

In the procedure to construct a graph which shows the location

relation of the k-mers and the read. It is unwise to check whether the
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bases are match one base by another.

In our algorithm, we use KMP algorithm to optimize. KMP algorithm

is Knuth–Morris–Pratt algorithm[29] . It is an excellent algorithm in string

match, especially when the letters of the string are not so many. It uses

the feature of the sequence to avoid unnecessary comparison and reach

an )( nmO  complexity ( m is the length of the k-mer and n is the length

of the read ) .

For each k-mer ,we construct a “fail array” for later match.

The c++ code is :

In the procedure of matching, if the bases at the ith base’s location

are not match, the whole k-mer will move forward by a distance

// kmer[i][j] the j th base in the i th kmer
// fail[i][j] the j th fail location of the i th kmer
inline void getfail(int x){
int j,len=kmerlength[x];
fail[x][0]=-1;
fail[x][1]=0;
for(int i=2;i<=len;i++){
j=fail[x][i-1];
while(kmer[x][j+1]!=kmer[x][i]&&j!=-1)j=fail[x][j];
fail[x][i]=j+1;
}
}
void constructnextarray(){
for(int i=1;i<=kmertot;i++){
getfail(i);
}
}
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]][][[_ kjidpbool

]1][_[)1(  ikmerthisfaili for later matching.

In the procedure of identifying variation, the map situation on the

read is quite complicated.If we use the method of brute force search, it

would cause high consumption.

Here, we use dynamic programming[30] to solve it.

We construct an array to represent the situation.

represents the match situation

of the i th base in the detecting read and the j th base in read which

generates k-mers , it can also represent k bases are mismatch before this

situation.

The Dynamic transfer equation :

]'][']['[|)),_(&&]][][[(]][][[ mkmjmidpmatchmlengthkmerkmjmidpkjidp  .

If dp[i-m][j-m][k] is true(match) and there is a k-mer whose length is m

and perfectly match this m-base-long place, then dp[i][j][k] is true.

If dp[i-m’][j-m’][k-m’] is true(match) , dp[i][j][k] can be true.

https://www.baidu.com/javascript:;
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2.3. Detecting SV in adjacent reads

Though we have finished the procedure of similarity check and the

definition of variation, some reads are still out of our consideration.

If reads are defined as not similar with other reads, they probably

have SVs overlapping two reads or they are waste reads.

Three kinds of reads need to be connected with their adjacent reads

to detect structural variations:

1.Reads that are not similar with other reads according to the

standard in similarity check.

2.Reads overlap a large part on each other.

3.Reads have SV at their ends.

In the de bruijn graph[19] we mentioned in Introduction, two

adjacent reads could be found with some same nodes which represent

k-mers they have ,and there is a distinct link which contains nodes and

edges in which they exist simultaneously.

... ... ...

ATCGAGGCGATA

AGGCGATAGATC

ATCG AGGC GATA GATC

(Figure 8) Examples of adjacent reads
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In the figure above, k-mers extracted from two probably adjacent

reads are located under two reads. The purple bases are located in the

overlapping region, while the blue and red ones belong to two reads

respectively.

Many k-mers between each pair of adjacent k-mers are not shown

in Figure 8 , such as purple k-mers: GGCG,GCGA,CGAT, etc.

For reads that are not similar with other reads according to the

standard in similarity check , we will find the most distinct overlap reads

on both of its ends to connect to it and try to match a normal read and

detect possible structural variations.

For reads overlap a large part on each other, after connecting them

and detecting structural variations in the connected read, we will check

whether the new detected SV is the same as the former one. If not , we

will try to identify all possible combinations of SVs that can explain this

change in the DNA sequence and obey the rule of KISS[31] ( keep it simple

stupid ) to accept the most simple combination as its variation.

For reads that have structural variations at their ends, we will check

whether its adjacent read also has structural variation, at the end which

they overlap each other. If so, we will consider that there is a large

structural variation.
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2.4. Genome construction[20]

2.4.1 Data processing

For each read, we have already cut them into k-mers. In the

procedure we generate k-mers from reads, we can simultaneously

construct a de bruijn graph. Every pair of adjacent nodes which

represent k-mers must have the same (k-1) bases. If the previous node is

ATG, the following node must be TGX, X could be any kind of base of DNA.

It guarantee each pair of nodes can represent exactly (k+1) bases and the

continuous property of the graph.

The best length of k-mers , which is also the value of k is

controversial. And it is consuming to construct de bruijn graphs with all

kinds of k-mers. We will still choose several kinds of k-mers to construct

de bruijn graphs.

2.4.2 Graph modification

1. We will mark all the nodes whose degree is one. Because they

are not likely to appear in the Euler path we are looking for, expect for

the situation that they are the starting point.

2.We will remove some edges with distinctly low coverage, because

they are probably accidental errors.

3. We will turn the structure shown in the figure below into a



- 30 -

structure with two dependent path , because the former structures

would be obstacles for us to find an ideal Euler path.

4.We will merge some circle in the graph or remove some edges

from the graph in order to find Euler path. Because circles in the graph

will not likely provide us with a ideal Euler path.

Some of the edges in a circle would be

merged or deleted.

2.4.3 Find Euler path[32]

Fleury's algorithm[33] is an elegant but inefficient algorithm which

dates to 1883 when “Deux problèmes de Géométrie de situation” was

published.

Choosing start node: If all nodes on the graph have an even degree,

the start node can be a random one. If there are two nodes with odd

degree, the start node would be either of them.

(Figure 9) Modification of a certain structure

(Figure 10) Modification of circles in the graph
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Choosing edges: Setting off from the start node, we will delete all

edges we have chosen from the original graph. In no case except for

there are not any alternatives will we choose the edge whose deletion

will make the graph disconnected.

The original complexity of the Fleury algorithm is )|(| 2EO . E is the

set of edges. A dynamic bridge-finding algorithm of Thorup (2000)[34]

allows this to be improved to  EEEO loglog)(log 3 [35].

https://en.wikipedia.org/wiki/Eulerian_path
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2.5. Primary check and output

After detecting the structural variations and constructing the

genome, we will check:

1.whether the genome we constructed matches the information in

the reads and the genome constructed by the normal reads.

2.whether the adjacent reads we have checked are still adjacent.

3.whether the result of SV detection is simple and quite perfectly

explains the variation in the genome.

4.We will also arbitrarily choose a certain number of structural

variations to check whether it can explain the current situation in the

genome and the similarity between our genome and some reference

genomes.

In the output file, we will provide similarity between reads, results

of detection of structural variations and the genome we construct.
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3.Comparison with another method

Mainly based on the idea of SUMFIN[13], we have a framework of its

method which constructs a tree and compare it with our algorithm using

k-mers.

It constructs a “Quaternary sequence tree” and uses it as a

generalized suffix array. This method puts all reads from tumor and

normal cells and their suffixes whose length is larger than a certain

number into the tree. The memory this method uses to construct the

tree will be huge. If we assume that all reads has the same length, the

upper bound of the memory it uses would be estimated as
n

n
M 2)(

2
1

,(M

is the total number of bases of all reads , n is the number of reads) and it

can be simplified as
basesofNumberreadoflengthAverage __

2
___


.

Because of the length restriction of the sequences to insert in the tree,

the real memory can be calculated as 2

22 cacan 


(n is the number of

reads,a is the average length of the reads, c is the length of the shortest

sequence) which is smaller than its upper bound. But if we consider the

memory our method uses in the similar procedure, we will find that if we

first register all frequently used k-mers whose length is under or equals

to 12 (22,369,620 k-mers in all), the memory we need will be controlled

in a low level. And our method performs distinctly well when the
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coverage of sequencing is high and the length of reads is low.

The figure below demonstrates the difference in required memory

between two methods.

Number of
reads(n)

Length of
reads(l)

Sequencing
coverage(c)

Our method Framework
of SMUFIN

Ⅰ 10million 60 30x 



 20

13i
pi

c
ln

2
802060 22 

n

Ⅱ 10million 90 30x 



 30

13i
pi

c
ln

2
1102090 22 

n

Ⅲ 10million 150 30x 



 50

13i
pi

c
ln

2
17020150 22 

n

Ⅳ 10million 60 10x 



 30

13i
pi

c
ln

2
802060 22 

n

Ⅴ 10million 90 10x 



 30

14i
pi

c
ln

2
1102090 22 

n

P is the number of bases which have been processed

000,000,261p and 000,000,130,1p

(Figure 11) Required Memory of Two Methods

(Table 2) Required Memory of Two Methods in Different Circumstances
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This method depends on the tree to cluster the tumor-specific

reads which are form by the same variation. Since the method inserts a

lot of sequences including reads and their suffixes into the tree, the

number of this kind of comparisons and sequence extractions will be

large. Our method with k-mer can control the number of comparisons

with an upper bound 2
____ 2 readsofnumberreadsofnumber 

. In fact, if

we classified the reads by k-mers first and optimize the procedure of

similarity check, the real number of comparison will be smaller than the

upper bound and the complexity of a single comparison is shown as the

above , which is not too high .

Due to the clustering requires that beginnings of a certain length of

two sequences must be exactly the same, the certain length must not be

too big. If two sequences must be the same in a large number of bases,

the method will lose much of its sensitivity. When the certain length is

short, it leaves the task of ruling out the false-positive to the following

procedures. As is said in the paper of SMUFIN[13], a large fraction of

false-positive structural variations are rules out when constructing

“break point block”.

After comparing and clustering the mutated reads, the method

using the tree will do several interrogations on the tree to find “all

detectable reads that are overlapping and complementary to construct

break point block”. This procedure consumes a lot while our method has
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already found the related normal reads in the procedure of similarity

check.

In the procedure of identification of SV and the detection of large

SVs, two method don’t have too much difference.

In the procedure of showing the location in the genome, SMUFIN

doesn’t use any method like sequence assembly. Instead, it maps the

reads onto a reference. Its results would be affected by the polymorphic

differences between the patient’s genome and the reference genome. If

we adopt this procedure of SMUFIN, we can also accelerate our

algorithm but the results will also be affected.

Our method Framework of SMUFIN

Comparison Upper bound
2

2 nn  
2

)1(*)1(* 22 cancan

φ(percentage of similar reads)

Finding overlapping and
complementary reads × √(time-consuming)

Showing results Sequence assembly OR
Mapping to reference Mapping to reference

In summary, our algorithm can use less memory and ensure

sensitivity and specificity with a distinctly higher speed than another

method.

(Table 3) Difference in procedures of two methods
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Our method SUMFIN[13]

Insertion √ √

Deletion √ √

Inversion √ √

SNV(SNP) √ √

Translocation √ x

CNV √ x

The method using k-mers can detect the variations shown in the

table above. SMUFIN’s competence in detecting translocations and CNV

is weak. There are also many complex variation types that were defined

by researchers of other method using reference, such as mirror

duplication and co-amplification. But the simple ones can also explain

these situations.

(Table 4) Difference in detectable variations of two methods
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4. Result of test running

4.1 Similarity check

With a simulation program , we generate an adequate number of

reads to test the performance of the algorithm.

The original data and programs for generating reads can be seen in

the supplement material.

Type of variation length
Length of

variation

Rate of being

recognized as similar

SNP(Single-Nucleotide

Polymorphism)

30 bases 1 100/100(100%)

50 bases 1 1000/1000(100%)

TNP(Three-Nucleotide

Polymorphism)

30 bases 3 100/100(100%)

50 bases 3 100/100(100%)

50 bases 3 999/1000(99.9%)

Insertion

30 bases 3 100/100(100%)

30 bases 5 100/100(100%)

50 bases 5 100/100(100%)

50 bases 10 100/100(100%)

50 bases 30 100/100(100%)

Deletion 30 bases 3 100/100(100%)

(Table 5) The result of test running of similarity check
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(Table 5) continued 5 100/100(100%)

50 bases

5 100/100(100%)

10 100/100(100%)

30 100/100(100%)

Translocation 50 bases

3 100/100(100%)

5 100/100(100%)

12 100/100(100%)

20 100/100(100%)

30 99/100(99%)

Inversion 50 bases

3 100/100(100%)

5 100/100(100%)

10 100/100(100%)

20 100/100(100%)

CNV(Copy Number

Variation)
50 bases

3 100/100(100%)

5 100/100(100%)

10 99/100(99%)

We generated 9000 reads and did 27 test running. The variation

types are SNP, TNP, insertion, deletion, translocation, inversion,and CNV.

We achieved an average successful rate 99.92%(calculated by the results

of each test ) or 99.93% (calculated by the number of pairs being
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recognized as similar) . Most of the reads with the specific structural

variations according to the table above can pass the similarity check

under the assumption of SV.

4.2 Identification of structural variations

As is shown in the discussion in the paper of the algorithm

COSMOS[11], it is difficult to identify how complicated structural

variations were formed. The programme to identify the type and

location of structural variations can have high rate of success to identify

simple insertion or deletion. For the complex structural variations, it can

also provide a certain number of possible explanations of the variation

which are corresponding to the actual variation .

When we find and identify the structural variations, we can easily

mark the SVs in the genome by a low complexity process according to

the position of the reads.
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5. Discussions

There are also many possible and achievable improvements of the

algorithm.

According to the feature of the calculation in the algorithm, its

computation would be accelerated if we can develop a

parallel-computing[36] or distributed-computing[37] version of the

algorithm.

Many features of variations caused by some diseases are being

found by researchers in the biological field. Moreover, features of

variations can be obtained by the techniques of machine learning. If we

can use these features correctly, it will enhance the ability of the

algorithm to identify certain variations.
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6. Conclusions

Detecting structural variations is essential to the cure of illness[1~8].

Methods without using reference avoid a lot of problems caused by the

difference between the genome of the patient himself and the reference.

Computer science can certainly help to detect SVs and provide reliable,

accurate and efficient algorithm.

In this work, we proposed a method without using reference. The

process of the algorithm can be divided as similarity check, identification

of structural variations , detecting SVs in adjacent reads and genome

construction. By using k-mers, we combined the process of SV detection

with sequence assembly with only the normal reads and tumor reads of

the patient. With several procedures in similarity check, we can rule out

the reads that are not similar though under the assumption of SV, and

recognize reads that have SV as a similar one with the non-mutated one.

The algorithm can use less memory and have a higher speed than the

framework of SUMFIN[13], another method which dose not use reference.

The successful rate of similarity check of reads with SV is about 99.926% .

At the same time, the result of identification of SV can explain the

change in the genome at a high percentage of success.
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