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Zihao Liu
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E-mail: travor lzh@163.com

Abstract. In this paper, we develop a novel analytic method to prove the prime number
theorem in de la Vallée Poussin’s form:

⇡(x) = li(x) +O(xe�c
p
log x)

Instead of performing asymptotic expansion on Chebyshev functions as in conventional analytic
methods, this new approach uses contour-integration method to analyze Riemann’s prime
counting function J(x), which only di↵ers from ⇡(x) by O(

p
x/ log x).

1. Introduction
The prime number theorem[1][2] has been a popular topic in analytic number theory since the

19th century. Its first proofs were independently given by Hadamard and de la Vallée Poussin

in 1896 [3] using analytic methods. Since then, mathematicians such as Apostol [1], Levinson

[4], Newman [5][6], Selberg [7], Stein [8], and Wright [9] have explored di↵erent approaches (e.g.

elementary methods, Tauberian theorems, and contour integrations) to prove this theorem.

Instead of analyzing ⇡(x) directly, present proofs, regardless elementary or analytic, first

attacked either of the Chebyshev functions

#(x) =
X

px

log p (1)

 (x) =
X

nx

⇤(n) =
X

klog2 x

#(x1/k) (2)

to derive asymptotic formulae, and estimates for ⇡(x) were later obtained using elementary

methods, such as partial summation, to #(x). Although Landau [1][10] derived the prime number

theorem by proving

lim
x!1

1

x

X

nx

µ(n) = 0 (3)

lim
x!1

X

nx

µ(n)

n
= 0 (4)
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he still justified the equivalence of (3) and (4) to the prime number theorem with Chebyshev

functions. Hence, it is an interesting task to investigate a method that avoids the use of (1) and

(2).

In this paper, we propose a proof of the prime number theorem that avoids the use of

Chebyshev functions. In particular, we first introduce Riemann’s prime counting function

J(x) to our problem and relate it to ⇡(x). Then, by inverse Mellin transform, an integral

representation is obtained for ⇡(x). In the subsequent part of this paper, we evaluate the

contour integral and obtain the prime number theorem in the version of de la Vallée Poussin.

That is, there exists a positive constant c such that

⇡(x) = li(x) +O(xe�c
p
log x

) (5)

where li(x) is the logarithmic integral:

li(x) = lim
"!0+

Z 1�"

0
+

Z x

1+"

dt

log t

�
(6)

In essence, the main contribution of this paper is a new proof of the prime number theorem.

The significance of this proof is that it is an analytic method that avoids the use of Chebyshev

functions.

2. Riemann’s prime counting function J(x)
Let an be defined by

an =

(
1/k n = pk, p prime

0 otherwise
(7)

In his paper on ⇡(x), Riemann [11] defined J(x) as the summatory function for an:

J(x) =
X

nx

an =

X

1<pkx

1

k
(8)

This function has a remarkable property that allows us to connect it to the standard prime

counting function ⇡(x):

Theorem 1. For x � 2, we have

J(x) = ⇡(x) +O(
p
x log log x) (9)

Proof. It follows from (8) that

J(x)� ⇡(x) =
X

2klog2 x

⇡(x1/k)

k


X

2klog2 x

⇡(
p
x)

k



X

2klog2 x

p
x

k
⌧

p
x log log x

By (9), asymptotic formula for J(x) can be ported to ⇡(x) with ease, so we can study ⇡(x)
simultaneously when we analyze J(x).
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3. Integral representation for J(x) and ⇡(x)
Riemann [11] had shown that

J(x) =
1

2⇡i

Z k+i1

k�i1

xs

s
log ⇣(s)ds (10)

for noninteger x > 2 and k > 1 using Fourier analysis. However, because (10) involves infinite

integrals, it would be di�cult to analyze its asymptotic behavior directly, so we wish to convert

(10) into a quantitative form. In other words, we prove a special case of Perron’s formula [3][12].

Lemma 1. For <(s) > 1, we have

1X

n=1

an
ns

= log ⇣(s) (11)

Proof. Since <(s) > 1, the left hand side converges absolutely, we can change the order of

summation safely:

1X

n=1

an
ns

=

X

p

1X

k=1

1

kpks
=

X

p

log
1

1� p�s

= log

Y

p

1

1� p�s
= log ⇣(s)

Lemma 2. For k > 1 and noninteger x > 2, if we set

J(x) =
1

2⇡i

Z k+iT

k�iT

xs

s
log ⇣(s)ds+R1(x, k, T ) (12)

then

R1(x, k, T ) ⌧
xk

T

1X

n=1

1

nk| log x/n|
(13)

Proof. If we define

h(y) =

(
0 0 < y < 1

1 y > 1
(14)

then J(x) can be rewritten into

J(x) =
1X

n=1

anh
⇣x
n

⌘
(15)

The right hand side converges certainly because the summand vanishes once n > x. Due to

Titchmarsh [3], for k > 1 we have

h(y) =
1

2⇡i

Z k+iT

k�iT

ys

s
ds+O

✓
yk

T | log y|

◆
(16)

Since log ⇣(s) converges absolutely whenever <(s) = k > 1, we plug (16) and (11) into (15).

Finally, |an|  1 allows us to deduce (13).
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Lemma 3. Using the same notation, we have

R1(x, k, T ) ⌧
xk

T (k � 1)
+

x log x

T
+

x

T |x�N |
(17)

where N denotes the nearest integer to x.

Proof. To handle the logarithms in the denominator in (13), we partition the sum into

X

n

=

X

n<x/2,n>2x

+

X

x/2nN�1

+

X

N+1n2x

+
xk

Tnk| log x/N |

In the first sum, it is evident that | log x/n| > log 2, so we have

xk

T

X

n<x/2,n>2x

1

nk| log x/n|
⌧

xk

T

X

n<x/2,n>2x

1

nk


xk

T

1X

n=1

1

nk

=
xk

T
⇣(k) ⌧

xk

T (k � 1)

in which the last inequality follows from the fact that ⇣(s) ⇠ 1/(s� 1) when s ! 1 [3].

When x/2  n  2x, the logarithm function satisfies that

���log
x

n

��� �
|x� n|

x
(18)

so we have

xk

T

X

x/2nN�1

1

nk| log x/n|
⌧

1

T

X

x/2nN�1

1

| log x/n|
⌧

x

T

X

x/2nN�1

1

x� n

⌧
x

T

Z N�1

x/2

dt

x� t
=

x

T
log

x/2

x�N + 1
⌧

x log x

T

in which the last part follows from the fact that N � 1/2  x  N + 1/2. Due to symmetry,

(18) can be applied to the sum over N + 1  n  2x to obtain the same estimate. For the last

part, using (18), we have

xk

Tnk| log x/N |
⌧

1

T | log x/N |
⌧

x

T |x�N |
(19)

Combining all these estimates gives (17).

Theorem 2. For half-odd integer x > 2 and k = 1 + 1/ log x, we have

⇡(x) =
1

2⇡i

Z k+iT

k�iT

xs

s
log ⇣(s)ds+R2(x, T ) (20)

with

R2(x, T ) ⌧
x log x

T
+

p
x log log x (21)
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Proof. Plugging k = 1 + 1/ log x into (17) gives

R1(x, 1 + 1/ log x, T ) ⌧
x log x

T
+

x

T |x�N |
(22)

when x is half-odd, we have |x�N | = 1/2, so the second term of (22) can be removed. Plugging

(22) into (12), we get

J(x) =
1

2⇡i

Z k+iT

k�iT

xs

s
log ⇣(s)ds+O

✓
x log x

T

◆
(23)

Finally, we replace J(x) with (23) in (9) to obtain the result.

4. Evaluation of the integral
To handle the integral, we consider a rectangular region R with vertices 1� � ± iT and k ± iT .
This implies

1

2⇡i

Z k+iT

k�iT

xs

s
log ⇣(s)ds =

1

2⇡i

I

@R

xs

s
log ⇣(s)ds (24)

+
1

2⇡i

Z 1���iT

k�iT
+

Z 1��+iT

1���iT
+

Z k+iT

1��+iT

�
(25)

where @R denotes the boundary of R in counterclockwise direction and � is chosen such that

⇣(s) 6= 0 in R and on @R. This means that the only singularity of the integrand in R is at s = 1.

However, because s = 1 is a logarithmic singularity, circumvention is needed to evaluate it.

Lemma 4. If we define

f(r) =
1

2⇡i

I

(r+)

xs

s
log

1

s/r � 1
ds (26)

where (r+) denotes any counterclockwise path that encloses only the singularity at s = r, then

f 0
(r) =

xr

r
(27)

for r 6= 0.

Proof. Since

@

@r
log

1

s/r � 1
=

@

@r
[log r � log(s� r)] =

1

r
+

1

s� r

we have

f 0
(r) =

1

2⇡i

I

(r+)

xs

s


1

r
+

1

s� r

�
ds

= lim
s!r

xs

s


s� r

r
+ 1

�
=

xr

r

Lemma 5. Using the same notation, for all ⌘ > 0 we have

f(1 + i⌘) = li(x1+i⌘
)� i⇡ (28)

f(1� i⌘) = li(x1�i⌘
) + i⇡ (29)
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Proof. When ⌘ > 0, because (26) implies lima!1 f(a) = 0, we have

f(1 + i⌘) = f(1 + i⌘)� f(�1+ i⌘) =

Z 1+i⌘

�1+i⌘
f 0
(r)dr

=

Z 1+i⌘

�1+i⌘

xr

r
dr

| {z }
u=r log x

=

Z (1+i⌘) log x

(�1+i⌘) log x

eu

u
du

By Cauchy’s integral theorem [13], we can deform the path of integration of the last integral

into a line segment connecting �1 and �" < 0, a clockwise circular arc connecting �" and ",
and finally a line segment connecting " and (1 + ⌘i) log x. That is, we have

f(1 + i⌘) =

Z �"

�1
+

Z (1+�i) log x

"
+

Z "

�"
(30)

for all " > 0. As "! 0
+
, the latter integral becomes

lim
"!0+

Z "

�"

eu

u
du = lim

"!0+

Z 0

⇡

e"e
i✓

"ei✓
(i"ei✓)d✓ = i lim

"!0+

Z 0

⇡
e"e

i✓
d✓

= �i

Z 0

⇡
d✓ = �i⇡

in which the interchanging of the limit operation follows from the fact that e"e
i✓

converges to 1

uniformly:

|e"e
i✓
� 1| 

1X

n=1

"n

n!
= e" � 1 (31)

As "! 0
+
, the first two integrals become

lim
"!0+

"Z �"

�1
+

Z (1+⌘i) log x

"

eu

u
du

#

| {z }
t=eu

= lim
"!0+

"Z e�"

�1
+

Z x1+i⌘

e"

dt

log t

#
(32)

By (6), it is obvious that the right hand side evaluates to li(x1+i⌘
). By plugging everything into

(30), we see that (28) is true. A symmetric argument can be applied to prove (29).

Theorem 3. Using the same notation, we have

1

2⇡i

I

@R

xs

s
log ⇣(s)ds = li(x) (33)

Proof. Since ⇣(s) ⇠ 1/(s� 1) when s is near one [3], we can transform the integrand:

1

2⇡i

I

@R

xs

s
log ⇣(s)ds =

1

2⇡i

I

(1+)

xs

s
log

1

s� 1
ds (34)

By (26), we see that the right hand side is exactly f(1), which can be calculated by evaluating

its Cauchy principal value from (28) and (29):

f(1) = lim
⌘!0+

f(1 + i⌘) + f(1� i⌘)

2
= li(x) (35)
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Since Theorem 3 allows us to evaluate (24), we now move our focus to (25). To begin with,

we extract some properties of ⇣(s) necessary for the proof.

Lemma 6 (de la Vallée Poussin). Let s = �+ it. Then there exists a fixed constant A > 0 such
that whenever 1�A/ log |t|  �  2 and |t| � 2 we have ⇣(s) 6= 0 and

⇣ 0

⇣
(s) ⌧ log |t| (36)

Moreover, in the same region we have

| log ⇣(s)| ⌧ log |t| (37)

Corollary 1. When s 2 @R, we have

| log ⇣(s)| ⌧ log T (38)

Proof. Proof for (36) is already covered in the third chapter of [3], so we move onto proving

(37). Since | log ⇣(2 + it)|  log ⇣(2), we can rewrite log ⇣(s) into

log ⇣(s) =

Z �

2

⇣ 0

⇣
(u+ it)du+O(1)

⌧

Z �

2
log |t||du| = |� � 2| log |t|

It is evident that � is bounded, so (37) directly follows.

Theorem 4. If we choose � = A/ log T and write

1

2⇡i

Z k+iT

k�iT

xs

s
log ⇣(s)ds = li(x) +R3(x, T ) (39)

then

R3(x, T ) ⌧ x log2 T exp

✓
�
A log x

log T

◆
(40)

Proof. By Corollary 1, it is evident that the integral over the horizontal segments of @R satsifies

����
Z 1��±iT

k±iT

xs

s
log ⇣(s)ds

���� ⌧
log T

T

Z 1��

k
xudu ⌧

x log T

T log x
(41)

Using Corollary 1, we can also establish an upper bound for the left vertical segment of @R:

����
Z 1��+iT

1���iT

xs

s
log ⇣(s)ds

���� ⌧ x1��
log T

Z T

�T

du

|1� � + it|
(42)

⌧ x1��
log

2 T = x log2 T exp

✓
�
A log x

log T

◆
(43)

wherein the last inequality follows from the definition of �. Plugging (41), (43) into (25) and

applying Theorem 3 to (24) give us the desired result.

With everything prepared, we move our attention back to the prime counting function ⇡(x).
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5. Proof of the prime number theorem
Applying Theorem 4 to (20), we get

⇡(x) = li(x) +R2(x, T ) +R3(x, T ) (44)

If we set log T =
p
log x, then we have

R2(x, e
p
log x

) ⌧ x log xe�
p
log x

(45)

R3(x, e
p
log x

) ⌧ x log xe�A
p
log x

(46)

If we choose a proper 0 < c < min(1, A), then the logarithms in (45) and (46) can be absorbed

into e�c
p
log x

. Plugging them into (44) gives us the final result:

Theorem 5 (de la Vallée Poussin). There exists a constant c > 0 such that

⇡(x) = li(x) +O(xe�c
p
log x

) (47)

Using the fact that li(x) ⇠ x/ log x, we can also sharpen the remainder of (9):

Corollary 2. Under Theorem 5, we have for x � 2 that

⇡(x) = J(x) +O

✓ p
x

log x

◆
(48)

Proof. Similar to how Theorem 1 is proved, we just need to give a better upper bound for

J(x)� ⇡(x). That is,

J(x)� ⇡(x) =
⇡(x1/2)

2
+

X

3klog2 x

⇡(x1/k)

k


⇡(x1/2)

2
+ ⇡(x1/3)

X

3klog2 x

1

k

⌧
x1/2

log x
+

x1/3 log log x

log x
⌧

p
x

log x

where the second last ⌧ follows from the fact that Theorem 5 implies ⇡(x) ⌧ x/ log x.

6. Conclusion
In this paper, we present a new proof of the prime number theorem that avoids the use of

Chebyshev functions. First, we prove (20) to transform the arithmetic problem into an analytic

problem. To evaluate the integral on the right hand side of (20), we set up a counterclockwise

rectangular path so that this task is divided in to (24) and (25). Subsequently, di↵erentiation

under integral is applied to evaluate (24), and classical zero-free region and upper bound for

⇣(s) are used to give estimates for (25). Finally, choosing a proper T , we deduce again the prime

number theorem in the version of de la Vallée Poussin.

The most significant contribution of the proof is the evaluation of (24), which gives the

main term of Theorem 5. Traditionally, number theorists study the prime number theorem and

its generalizations (i.e. prime number theorem for arithmetic progressions[12], prime number

theorem for automorphic L-functions[14], or sums of complex numbers over primes[2]) first using

the weighted sum X

nx

cn⇤(n) =
X

pkx

cn log p (49)
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and then convert it into sum over primes

X

px

cp (50)

using partial summation. However, introducing the parameter r suggests a possibility to directly

evaluate sum over prime powers

X

nx

ancn =

X

pkx

cpk

k
=

X

px

cp +R (51)

To study (50) from (49), partial summation is needed for conversion, but studying (50) from

(51) only requires us to provide upper estimates for

R =

X

2klog2 x

X

px1/k

cpk

k
(52)

Consequently, the proof technique presented in this paper may inspire new proofs of generalized

prime number theorems[14][2] as they are also studied using Perron’s formula[3].
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