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ABSTRACT. The simple problem of counting the number of lattice points in n-dimensional
simplexes, in fact has a much greater significance in singularity theory and number the-

ory. The number of lattice points is equal to the geometric genus of an isolated sin-

gularity of a weighted homogeneous polynomial. This paper estimates the number of

lattice points in a seven-dimensional simplex, and proves the Yau Geometric Conjecture

in seven dimensions, which gives an upper bound to the number. We do so by dividing

the simplex to several layers of cross section sixth-dimensional simplexes and sums up

the upper bound of lattice points in each layer. This proof provides potential insight to

extend the upper bound estimate to the general n-dimensional case.
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1. INTRODUCTION

For fixed real numbers a; > as > -+ > a, > 1, an n-dimensional real right-angled
simplex A, is defined by the inequality

ry T x
2 p 4T < where @y, - @y, > 0.
aq a9 Qp,
We define P, to be the number of positive integral points in A,,, i.e.,
x

2+---+x—”§1}.
(05} Qp,

Pn:#{(ajl,l?,“‘,ﬂ:n) 621

x
=+
ax
We use @, to-denote the number of non-negative integral points in A,,, i.e.,

0 = #{(xl,wz,---,m e (Z, U{0})"

ﬂJrg-l—---—i—ac—nﬁl}.
a a2

Qn

Note that the numbers P, and @, are intimately linked through the equation (see [5])
-P'n,<a17 Ag, - 7an) = Qn(al(l - CL), CL2(1 - Cl), T 7an(1 - CL)),
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where a is defined as — + — +- - -+ —. Hence, computing P, is equivalent to computing
ap Qg Qn

@n.

Finding a sharp estimate of P, (Q,) for real right-angled simplex is related to many
other mathematical problems. In number theory, recall that a function known as the

Dickman—de Bruijn function ¢ (x,y) is defined as the number of positive integers n such
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that n < z, and all of the prime factors of n are at most y, where x and y are positive
integers.

The numbers P, and @),, are intimately related to the Dickman—de Bruijn function in
[7]. The connection, described by Luo-Yau-Zuo [19], is most readily observed by noting
that, assume that p; < ps < --- < pi are the primes less than or equal to y, it follows
from

PipY ey S
that
e1logp) +exlogpy + -+ 4 e logpr, < log .

It can be rewritten as,
€1 €2 €k
Tge " oorr T Tme S
log p1 log pa log py,
that is exactly an expression in the format of the condition in the definition of @),,. Hence,
enumerating the Dickman—de Bruijn function is equivalent to calculating @),,.

The connections between P, and (), and other areas of number theory, including
primality testing, determining large gaps in the sequence of the primes, and discovering
new algorithms for prime factorization are described by Granville [7]. Furthermore, Lin,
et. al. [I7] describes the connection between P,, @), and singularity theory. Therefore, it
is a very interesting important problem to find and estimate P, and @),.

The quest to compute P, and @, dates back to 1899, when Pick [23] discovered the
famous Pick’s theorem, or a formula for ). This formula tells us that the number of
lattice points inside A, is determined by the area of the Ay and the number of integer
points on the boundary.

0N, N Z2

Qo = area(Aq)+ | +1

2 Y

where OA, represents the boundary of the triangle, and |0A N Z?| represents the number
of integral points on the boundary. Mordell [22] continued by discovering a formula for
@3 using Dedekind sums. Erhart 6] followed with the discovery of Ehrhart polynomials,
which facilitate the calculation of @),,. The theory of Ehrhart polynomials can be seen as
a higher-dimensional generalization of Pick’s theorem. More formally, consider a lattice
L in R” and a d-dimensional polytope P in R” with the property that all vertices of the
polytope are points of the lattice. For any positive integer ¢, let tP be the t-fold dilation
of P, i.e., the polytope formed by multiplying each vertex coordinate, in a basis for the
lattice, by a factor of ¢, and let

L(Pt) = #(tP N L)

be the number of lattice points contained in the polytope ¢ P. Ehrhart [6] showed that L is
a rational polynomial of degree d in ¢, i.e. there exist rational numbers Ly(P), ..., Lq(P)
such that:

L(Pt) = Lg(P)t* + Lg (Pt 4+ - - 4 Lo(P)
for all positive integers t. The Ehrhart polynomial of the interior of a closed convex
polytope P can be computed as:

L(int(P),t) = (—=1)*L(P, —t)

where d is the dimension of P. This result is known as Ehrhart-Macdonald reciprocity.
However, these Ehrhart polynomials are only useful if every coefficient is known, a
condition that is extremely difficult to meet in the general case, i.e., ai, as, - - -, a, are not

integers.
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The difficulty of this problem eventually led mathematicians to start trying to bound
P, and @, instead of finding precise formulas. Lehmer [I3] found that if a = a; = ay =

.-+ = a,, then
Qn = (LaJ +n>7
n

where |z |(round down) denotes the integral part of a real number . This formula nat-
urally yields a nice definition of sharpness of an estimate 7T, of @Q,. We consider the
estimate sharp if and only if

a+n
Tn|a1:a2:~-~:an:aEZ: n .

In other words, any upper or lower bound is sharp if and only if its estimate is exact
when a1 =ay=---=a, € Z.

Many other mathematicians (Hardy and Littlewood [0, [10, 11]; Lehmer. [8]; Spencer
[25], 26]; Brion and Vergneetc [4]; Beck [II, 2] B]; etc ) had also studied this problem from
other point of view, for more details one can see the introduction section in [29]. Here
we want to introduce another estimate which is the two-parts GLY Conjecture, an upper
bound for P, formulated by Lin-Yau [16]. Before we state the GLY Conjecture, we need
to first introduce the signed Stirling numbers of the first kind and a notation A} for
elementary symmetric polynomials as follows [34].

Definition 1.1. The (signed) Stirling numbers of the first kind s(n, k) are defined by the
following property:

1:[(36 —1i) = Z s(n, k)"

Define s(0,0) =1 and s(n,0) = s(0,n) = 0.

Definition 1.2. Let aq, a9, - -+, a, be positive real numbers. We denote

R

i=1 1<iy <ige<ip<n L%z k
Thus, A . s the elementary symmetric polynomial of ay, as, - - -, a, with degree n — k.
Conjecture 1.3 (GLY (Granville-Lin-Yau) Conjecture). Let

x xX Ty
Pn:#{($1,$2,7$n)621_1+_2++_§1}’
ay Gz an,
where a1 > ay > --- > a, > 1 are real numbers. If n > 3, then:

(1) Rough (general) upper estimate: For all a, > 1,

n

nl P, < g, := H(ai —1).

=1

(2) Sharp upper estimate: Forn > 3, if a; > ay > --- > a, > n— 1, then

—1 = —1-1
P Gt YU S Gl St U]
" 1=1 ( ! )
and equality holds if and only if ay =ay =---=a, € Z,.

4



The sharp GLY Conjecture has been proven to be true for 3 < n < 6 [31], 12, 29| [15],
and the rough GLY upper estimate holds for all n, as proven by Yau and Zhang [32].
Unfortunately, the sharp GLY Conjecture is not true for n = 7, and there is a counter-
example which was given in [29].

Conjecture 1.4 (Modified GLY Conjecture). There exists an integer a(n) which depends
only on n such that the sharp estimate GLY-Conjecture (2) holds when a; > ag > -+ >
a, = a(n).

The above Modified GLY Conjecture is studied in Wang Xuejun thesis, he proved that
a(7) =7 28]

In this paper, we will use the following theorem (the modified sharp GLY conjecture
forn =7):

Theorem 1.5 (modified GLY Conjecture for n =7 [28]). Let a1 > ay > a3 > aq4 > a5 >
ag > ay > 7 be real numbers and P; be the number of positive integral solutions of

T i) T3 Ty Ty T T
e e e g
ay a2 a3 a4 a5 ag ar

Then,
7' P; <ayasasasasagar — 3(a1a2a3a4a5a6 + 10203040507 += G102A3040607 + Q10203050607
175
+ ajaza4as5a6a7 + 410304050607 + A2a304a506a7) + T(a1a2a3a4a5 + aiasasasag

+ ajasazasag + a1asa4a5a06 + ayazasasas + asazasasag) — 49(arazazay + ayazasas
+ a1a9a30¢ + 1020405 + Q1020406 + A1G2050¢6 + A1A30405 + A1A30406 + Q1030506

406
-+ a1a4050¢ + 2030405 -+ 2030406 Nl Q2a3050¢ + 2040506 -+ a3a4a5a6) + _5 (a1a2a3

+ arasa4 + a1a0a5 + a1a006 + @1a304 + 10305 + a10306 + 10405 + 10406 + Q10506
+ a20304 + G2a305 + 20304 +asaqas + asaqag + asasag + asaqsas + azasag + a3a506
588

+ a4a5a6) — —5 (alag + a1 as + a1a4 + a1as + a1ag + a203 + G204 + G205 + A20¢

+ asayq + asas + asag + Q4.
Equality holds if and only if a1 = as = a3 =a4 = a5 =ag = a7 € Z,.

Research over-the GLY Conjecture have caused the proposal of another upper bound
estimate, the Yau Number-Theoretic Conjecture (Conjecture made by Yau in 1995.

Conjecture 1.6 (Yau Number-Theoretic Conjecture). Let n > 3 be a positive integer,
and let a1 > as--+ > a, > 1 be real numbers. If P, > 0, then

P, <(ag—1)-(an—1) = (an — )" +an(a, — 1) (a, — (n—1)),
and equality holds if and only if a; = ---=a, € Z.

In this paper, we will use the n = 6 case of Conjecture [1.6] proven by Liang-Yau-Zuo
[14], extensively. We reproduce it as a theorem below for easy reference.

Theorem 1.7 (Yau Number-Theoretic Conjecture for n = 6). Let a; > as > a3 > a4 >
as > ag > 1 be real numbers. If Py > 0, then

720P, < pn— (ag — 1)® + ag(ag — 1)(ag — 2)(as — 3)(ag — 4)(ag — 5),
where = (a3 — 1)(az — 1)(ag — 1)(ay — 1)(as — 1)(ag — 1). Equality holds if and only if

L =09 =03 =a4 = a5 = ag € Z.
5



For recent progress of Yau Number-Theoretic Conjecture, one can see [14, 37]. In order
to state the Yau Geometric Conjecture, we need to first define a weighted homogeneous
polynomial as follows:

Definition 1.8. A polynomial f(z, 29, -+, x,) is a weighted homogeneous polynomial if
it is a sum of monomials x' x% - - - 2’ such that, for some fized positive rational numbers

n
Wiy, Wz, "+, Wn,

Z_l + Z_z 4+ 4 Z_n — 1’
wy W2 n
for every monomial of f. The numbers wy,wsy,---,w, are known as the weights of the
polynomial.
Furthermore, for any weighted homogeneous polynomial f(xy,---,xz,) defines an iso-
lated singularity at the origin, i.e., f = 0f/0zy = --- = 0f/0zx, = 0 has only a zero

solution, then there are two important invariants associated to f. These two invariants
are the Milnor number p and the geometric genus p, which can be calculated from the
weights wq, we, - - -, w,, as follows.

p=(wy = D(wy = 1)+ (wp — 1),
see [21] and

Pg:#{(xl,xg,---,xn) EZ’}’F:E—FQ—F“-#—ﬁ < 1},
Wi W2 Wn
see [20].

The Durfee conjecture, althought the inequality is not sharp, but remains signficant
as it relates the above two important invariants of isolated hypersurface singularities by
a famous inequality n! p < p,. Although the Durfee conjecture was verified for weighted
homogeneous isolated hypersurface singularity in [32], it is still open for general isolated
hypersurface singularity. In 1995, Yau-announced his conjecture which proposed a sharp
inequality (see Conjecture . The Yau Geometric Conjecture is harder to prove compar-
ing with the Durfee conjecture. In this paper, we will prove the Yau Geometric Conjecture
for seven dimensional weighted homogeneous isolated hypersurface singularity.

Conjecture 1.9 (Yau Geometric Conjecture). Let f : (C",0) — (C,0) be a weighted
homogeneous polynomial with an isolated singularity at the origin. Let p, py, and v be the
Milnor number, geometric genus, and multiplicity of the singularity V = {z : f(z) = 0}.
Then,

1t —p(v) = nlpg,
where p(v) = (v — 1" —v(v —1)--- (v —n + 1). Equality holds if and only if f is a
homogeneous polynomial.

Remark. Note that p, counts the number of positive lattice points in the simplex

Tr1 T T
—+ =4+ 1<,
ap Gz an

where the a; are the weights of the weighted homogeneous polynomial f and ay > ay >
- > a, > 1 (c¢f [20)). Thus, the equality case of Conjecture isa = ay = -+ =
a, € Z. Furthermore, Saeki [24] tells us that v = [a,] (i.e. round up) and it is known

that p = (a1 — 1)(ag — 1) -+ (a, — 1) (cf. [21]). Chen-Yau-Zuo [5] also proved that the
6



Ap  Qn An

fractional part of a, has to be one o PR or . Finally, we can also define the
polynomial p,(v) = (v —1)" —v(v — 1; » -2(U —n+ 1)7.17717%[,8,

(1) pr(v) = —1 — 713 + 17430* — 15890° + 7000v* — 1540° + 140°,

(2) pe(v) = 14 114v — 2590° + 2050° — 700" + 9v°.

Conjecture is proven to hold for 3 < n < 6 [0, 30, [16, 18]. In this paper, we
prove Conjecture for n = 7. It extends the Yau Geometric Conjecture to yet another
dimension. This is difficult because the number of cases has increased from 6 in the 6-
dimensional case to 7 in the 7-dimensional one, adding the number of layers to consider
and increasing its complexity. We applied some new analysis techniques are used to prove
our main theorem. This has the potential to be able to generalize the Yau Geometric
Conjecture to any positive integer n.

Since most of the subcases have specified numeric values and the algebraic expressions
are great in size, all computations in this paper were done using Maple 2018. Our main
theorem is as follows.

Theorem 1.10 (Main Theorem). Let a; > ay > az > a4 > a5 >-ag > a; > 1 be real
T4

x x x
numbers and let P; be the number of positive integral solutions of 2By

ai a2 as Qq
T5 | Te

Dy T Define p = (a; — 1)(ag — 1) - -+ (a7 —1).If P; > 0, then
as Qg ay

TP < p— (=1 —713v + 1743v* — 15890 + 7000* — 1540v° + 140°),

where v is calculated as v = [ay]|. Note that the fractional part B of ar is one of

a; ay ay ar a a

—7,—7,—7,—7,—7, or —. Equality holds 4f and only if ay = ay = a3 = a4 = a5 =

ap Gz agz a4 Qs ag

ag = ay € Z.

Remark. In fact, Chen-Lin-Yau-Zuo (cf. [5] Theorem 2.5), proved that the fractional

a
part of a; has to be one of —7, —7, ceyoor . In [36], Yau-Zuo verified Conjecture (1.9
ap - as Qg

when p, = 0, In fact the condition P; > 0 and "Note that the fractional part 8 of a7 is
ar Gy ar ar ar ag .

one of —, —,—,—,—, or —. 7 can be removed from the above main theorem, please
a; ag asz a4 as Qg

also see section @

2. SOME LEMMAS

The following two lemmas will frequently use to decide the positivity of polynomials
in some restricted domains.

Lemma 2.1 ([29] Lemma 3.1). Let f(8) be a polynomial defined by
FB) =Y cp
i=0

where f € (0,1). If for any k =0,1,---,n

k
ZCi Z 0
=0

then f(B) >0 for g € (0,1).

Though the Lemma [2.1]is easy to use, the condition of Lemma may not be satisfied

in some situation. In that case, we can use the following lemma.
7



Lemma 2.2 (Sturm’s Theorem). Starting from a given polynomial Xo = f(x), let

X; = f'(x) and the polynomials X5, X3, -+, X, be determined by Euclidean algorithm
as follows:
Xo = X1 — Xy,
X1 = @QXo— X5,
Xro = Qr—er—l - X’r’a
X1 = QTXT‘
where deg X > deg Xy1 for k =1,---,r — 1. For every real number a which is not a

root of f(x) let w(a) be the number of variations in sign in the number sequence
Xo(a), X1<CL), T 7X7"(a>

in which all zeros are omitted. If b and ¢ are any numbers (b < c) for which f(z) does not
vanish, then the number of the various roots in the interval b < x < ¢(multiple roots to
be counted only once) is equal to

w(b) — w(c).
Proof. See [27]. O

Note that the computation in Lemma is more complicated than that in Lemma
2.1} Therefore, we prefer Lemma [2.1] when it works. However, the condition of Lemma
is necessary and sufficient, so it can be applied to judge the positivity of any such
polynomials in some intervals for general case.

3. PROOF OF MAIN THEOREM [L.10)]

Note that all computations in this paper were done using Maple 2018.

To prove the Main Theorem, we first fix the value for [a;],leave the other variables
free, and calculate the upper bound. We then sum these values to estimate the upper
bound for 7! P;. It then remains to show that the obtained upper bound is less than or
equal to the RHS of the main theorem. We shall seperate the proof into the following
cases, based on the value of [a7]:

Case I: 1 < a; < 2. Thus, [a7] =2;
Case II: 2 < a; < 3. Thus, [a;] = 3;
Case III: 3 < a; < 4. Thus, [a7] = 4;
Case IV: 4 < a; < 5. Thus, [a7]| = 5;
Case V: 5 < a; < 6. Thus, [a7] = 6;
Case VI: 6 < a; < 7. Thus, [a7;] =T7;
Case VII: 7 < ay.

To prove that the RHS is greater, we find the difference between that and the estimated
upper bound. Using the partial differentiation test, we show that the partial derivative
of the difference is positive for each order, so that the difference is increasing or constant
over its entire domain. It then simply remains to show that the minimal value of the
original difference is greater than or equal to 0.

3.1. Case I. In this case, [a7| = 2. Plugging that into the Main Theorem, we obtain the

following;:
8



Theorem 3.1. Let a1 > as > as > a4 > as > ag > ay > 1 be real numbers and let P; be
T T x x x x x

the number of positive integral solutions of Ll L R R If
a Qs as Q4 as Qg az

P >0 and1 < a; <2, then

TP, < (a; —1)(az —1)(as — 1)(as — 1)(a5 — 1)(ag — 1)(ay — 1) — 1.
Proof. Since a; € (1,2], we only have to consider the level z7; = 1. In this case, given
P; > 0, we know (21, x9, 3, T4, 5, s, v7) = (1,1,1,1,1,1,1) is a solution to the inequality

in the theorem above. If

1 1 1 1 1 1 1
-+t —+—F—4+—<1-—=aq,
aq a9 as ay as Gg az

Then « € (0, %] Let A; = a; -« fori=1,2,3,4,5,6. Rewritting the equation by substi-
tuting A;, we yield
1+1—|—1+1+1+1<1
A1 A2 Ag A4 A5 AG -
Using the Yau Number Theoretic Conjecture for n=6, we have:
+ Ag(As — 1)(As — 2)(As — 3)(As — 4)(A46 — 5)] = B.
Evaluate the difference between the RHS of the inequality in Theorem and the above

A
inequality, where we substitute a; = —. We get rid of the denominator, and set A; as
o

the following:
Ay :=a’(1—a)((a; — 1)(az — 1)(az — L)(ay — 1)(as — 1)(ag — 1)(a; — 1) — 1 — B).

Then we apply the partial differentiation test. We first must determine the domain of A;.

Note that ALG <1, A% < A% + ALG. This is true involving other A;. Thus we know

A >6,Ay>5 A3 >4, A, >3 As >2and Ag > 1.
Now we begin partial differentiation test
PN,

0A10A20A30A,0A50Aq

For all « € (0, 1] Thus; the partial derivative of A; with respect to Ay, Ay, A3, Ay, As, Ag
is positive and minimized at Ag = 1.
PN

0A10A50A30A,0A5

The partial is again positive with respect to Aj, Ag, A3, Ay, Ag for all A5 > 1, a € (0,1)

by symmetry. Hence, the next partial derivative is increasing, and we again take the
minimum value:

=705 —7a°+1>0.

=1—a>0.
Ag=1

"L =(1-a)*>0
6A18A26A38A4 As=1,A6=1 N @ )

For the same reason as above, using symmetry, we can evaluate the minimum value of
the partial derivative with A; =1 for i = 2,3, 4:

PN,
e =(1—-a)’>0
DA OADA, it arar L0
94,
=(1-a)*>0
OA10A | A3=1,A4=1,A5=1,A¢=1 (I=a)">0,

9



0A 5
OA; | As=1,45=1,44=1,45=1,46=1 (1=a)">0.
0A; 0A7 0A; 04
0Ay" 0A3 DAL DA;
are positive over the given domain. We then plug in the minimum values for Ay, As, Az, Ay,
and Aj to get a polynomial in terms of Ag and «, and we want to show that it is positive.

We define

Over a € (0, 1]. By symmetry of Ay in Ay, Ag, A3, Ay, and As, all

Ag = Al .
A1=6,A2=5,A3=4,A,=3,A5=2

We must show that A, is positive for all & € (0,1] and Ag > 1. By directly applying
the partial differentiation test, we realize that not all derivatives are positive over the
domain. Therefore, we evaluate the polynomial by dividing it into 2 cases.

Subcase(a): A; > 2.10,
Subcase(b): A5 < 2.10.

We determine the number 2.10 through testing, where all derivatives are positive when
As > 2.10.

3.1.1. Subcase I(a). In this subcase, we can apply the partial differentiation test normally

A, 5
8—142 = 7560« (1 — Cl/) > 0,
A,
= 4116.000°(1 —a) > 0
DAG 146=2.10 (X =ay >0,
PA,
== = 583.80a°(1 — o) > 0
DA 146=2.10 a/l —a) >0,
92N,
= 193.060°(1 — a) > 0
OAZ 14s=210 a’(l-a)>0,
oA
-2 = 720.0 + 697.0a5% — 698.0a° + 20.0a* — 155.0a> + 580.0a® — 1044.0cx > 0.
0Ag 1 A6=2.10

Over the set domain. Thus we know A, is positive over the entire domain in the subcase.
Finally, we evaluate A, at its minimum

A, = 1512.0 +905.60° — 926.7a° + 197.0a* — 905.50° + 2262.00> — 2912.4 > 0.

Ag=2.10

3.1.2. Subcase I(b). In this subcase, since both Ag and a have fixed, finite domains, we
can plot them in Maple to verify that it is non-negative over the entire region. Hence,
Subcase I(b) is complete, thus completing the proof for Theorem O

3.2. Case II. In this case, [ar| = 3. Plugging that into the Main Theorem, we obtain
the following

Theorem 3.2. Let a; > as > a3 > aq4 > as > ag > ay > 1 be real numbers and let P; be
T T x x x x x

the number of positive integral solutions of Rl R A i Rl Nl R S If
aq a9 as Q4 as ag ar

P; >0 and 2 < a; < 3, then

7! P7 S (a1 - ]_)(CLQ - 1)(&3 - 1)((14 - 1)(0,5 - 1)((16 - 1)(@7 - 1) — 128.
Proof. Since a; € (2, 3], we have two levels to consider: z7; = 1 and 27 = 2. There must
be solutions on the x7 = 1 level. Hence, we have the two following subcases
Subcase II(a): Ps(z7; =2) =0,

Subcase II(b): Ps(z7 =2) > 0.
10



3.2.1. Subcase II(a). We know that (x1, z9, x3, 24, T5, 6, x7) = (1,1,1,1,1,1,1) is a solu-
tion to the inequality in Theorem [3.2] If

Then o € (%, %].Let A; = a;-afori =1,2,3,4,5,6. Rewriting the equation by substituting
A;, we yield

Thus, by the Yau Number Theoretic Conjecture for n=6, we have
TPy =T Fs(xr =2) <T7[(A1 — 1)(A2 — 1)(A3 — 1)(As — 1)(A5 — 1)(As — 1)
— (A = 1)° + Ag(Ag — 1)(As — 2)(As — 3)(As — 4)(As — 5)] = B.
Evaluate the difference between the RHS of the inequality in Theorem and the above
inequality. We denote this difference as As. We note that
Az = Ay — 1270°(1 — ).
The partial derivatives to Az is the same to that of A;, which has been proven in the
last case. Therefore, we only need evaluate Az with each variable taking its minimum.
A1 >6,A3>5A3 >4, A, >3,A5 > 2and Ag > 1.
We must only check

A; = 12905 —1490°+175a* — 73503 +16240% —1764a+720 > 0.
A1=6,A2=5,A3=4,A4=3,A5=2,A¢=1

Therefore, Ag is always positive, and the subecase is complete.
3.2.2. Subcase II(b). We know that Ps(ar =2) > 0, so
(xla Lo, X3,T4,T5,T6, {E7) = (]-7 17 17 ]-a ]-7 17 2)
is a solution to the inequality in Theorem [3.2] If
1 1 1 1 1 1 2
+ :
aq as as Qy as Qg a7

then a € (0, %] because a; € (2,3]. Let A; = a; - o for i = 1,2,3,4,5,6. Rewriting the
equation by substituting A;, we yield

Thus, by the Yau Number Theoretic Conjecture for n=6, we have
+ As(As — 1)(As — 2)(A6 — 3)(As — 4)(As — 5)] = B,

and for the x7 = 1 layer

1+« 1+« 1+« 1+«
! =1 < . — — — —
7 P@'(l‘? 1) ~ 7[(141 20{ ].)(AQ 204 1)(143 2a 1)<A4 2a 1)
I+a I1+a I1+a 6 I1+a I1+a
(As - 5 — 1)(A - o —1) — (Ag - o —1)" + (46 o )(Ag - o —1)
1+« 1+« 14+« 1+ o
(Ag - e — 2)(Ag - e —3)(Ag - 9 —4)(Ag - 5o )] := Bs.



TP, =T (Ps(x7 = 1) + Ps(x7) = 2), so we can subtract the RHS of Theorem 3.2 by
the sum of the RHS of the above equalities to get A4, and we can rid the denominator
without changing the sign. Then, we merely need to apply the partial differentiation test
to A4.

A4 = 64@5(1 — Oé) [(a1 — 1)(0,2 — 1)(@3 — 1)(&4 — 1)(@5 — 1)(0,6 — 1)(@7 — 1) — 128 — (Bl +Bg)]
We are trying to show that it is positive for

A1 2 6,A2 2 5,A3 Z 4,144 Z 3,A5 Z 2 and Aﬁ > 1.
For convenience in later cases, we show that this is positive over (0, %] despite only having
to show that it is positive over (0, %] First, we determine
N,
0A10A20A30A,0A50Ag
For all « € (0, %] Thus, the partial derivative of A, with respect to Ay, As, A3, Ay, As, Ag
is positive and minimized at Ag = 1.
AW
8A16A28A38A48A5 Ag=1
The partial is again positive with respect to Aj, Ag, Az, Ay, Ag for all A5 > 1, a € (0,1)
by symmetry. Hence, the next partial derivative is increasing, and we again take the
minimum value:

= 455" — 41308 + 63a° + 35a* — 350 — 63a% + 29/ + 57 > 0.

= —7a" —21a% — 7a° + 350 + 3502 = 7T1a? — 21a + 57 > 0.

A,
8141814281438144 As=1,A6=1
Over the domain of «. For the same reason as above, using symmetry, we can evaluate
the minimum value of the partial derivative with'A; = 1 for ¢ = 2, 3, 4:

=(1-a)?>0.

D3N\,

_ =7(=1 2(a* +2a° — 2 (1
DAL DA, | Attt Aot (=1 + a)*(a” 4 2 a+57/7)(1+ «) >0,
ﬂ ==T7(-14+a)** +a* - a+57/T)(1+a) >0
0A10As | A3=1,44=1,A5=1,4¢=1 ’

8A4 4 2

—_— = (-1 1 7 57 0.

OA | | A3=1,43=1,A4=1,A5=1,A6=1 (=1 +a) (1 +a)(Ta” +57) >

Over the interval a € (0, 3]. By symmetry of Ay in Ay, Ay, A3, Ay, and As, all
0Ay 0A, 0A, 0A4
0Ay" A3 DAL DAs
are positive overthe given domain. We then plug in the minimum values for Ay, As, Az, Ay,

and Aj to get a polynomial in terms of Ag and «, and we want to show that it is positive.
We define

A5 = A4 .
A1=6,A9=5,A3=4,A,=3,A5=2

We must show that A is positive for all & € (0, 3] and Ag > 1. If we apply the partial

differentiation test normally, we will obtain negative values for certain partial derivatives.
Through testing, we realize that if Ag > 2, then all partial derivatives are positive.

Therefore, we first test the case where Ag > 2.

PA
—— = —15120a(33a® — 28a° + 5a* — 5a® — 4a — 1) > 0,
DA3
84A5 5 4 3 2
— = —3360a(—1+ «)(59a” — 11a” + 6a” + 34a” + 31la +9) > 0,

12



D3N

= —1680a(—1+ a)(11a® — 11a* — 33a® — 3a® + 34a + 18) > 0,

aA% Ag=2
02y 5 4 3 2
3 = —2240(—1 + @)(70a° + 97a* — 34a® — 16502 4 30a + 90) > 0,
aAG Ag=2
A
—g A5 , =51072a" — 5707205 — 114960° + 33248a* + 35040a° — 5523202 — 21240
6 | Ag=2

+ 41040 > 0.

Over the set domain. Therefore, As is increasing when Ag > 2. We confirm that it-is
positive by evaluating it at its minimum

A, =61568a" — 52096a° — 106560° — 347360 + 112880a° — 490720 — 94608«

+ 82080 > 0,

for a € (0, 3]. As for when Ag € [1, 2], similar to Subcase I(b), since both 4g and o have
fixed, finite domains, we can plot them in Maple to verify that it is non-negative over the

entire region. Hence, Subcase 1I(b) is complete, thus completing the proof for Theorem
2.2. O

Ag=2

3.3. Case III. In this case, [a;] = 4. Plugging that into the Main Theorem, we obtain
the following:

Theorem 3.3. Let a; > ag > a3 > aq4 > as > ag > ay > 1 be real numbers and let P; be
T T x x x x x
the number of positive integral solutions of L2y BT T, If

aq Qs as Q4 as Gg ar
P >0 and 3 < ay < 4, then
7! P7 S (CLl - 1)(&2 - 1)(&3 - 1)(&4 ~ 1)(&5 - 1)(&6 - 1)((17 - ]_) — 2187.

Proof. Since a; € (3,4], we have three levels to consider: 7 = 1,27 = 2 and z; = 3.
There must be solutions on the 27 = 1 level. Hence, we have the three following subcases:
Subcase IIl(a): Ps(z7 =3) = Ps(z7y =2) =0,
Subcase III(b): Ps(x7 =3) =0, Ps(x7 =2) > 0,
Subcase III(c): Fs(z7 =3) > 0, Ps(x7 = 2) > 0.

3.3.1. Subcase Ill(a). We know that (x1, s, x3, x4, Ts5, 6, x7) = (1,1,1,1,1,1,1) is a so-
lution to the inequality in Theorem If

1 1 1 1 1 1 1

— ==+ —F—F+—<1-—=aq,

ay a2 az a4 a5 Gg ar
then o € (%, %] Let A; = a;-afori=1,2,3,4,5,6. Rewriting the equation by substituting
A, we yield

14_1+1+1+1+1<1

A Ay Az Ay A Ag T
Thus, by the Yau Geometric Conjecture for n=6, we have
NP =T Fs(zs =1) < 7[(A1 — 1)(A2 — 1)(A3 — 1)(As — 1)(A5 — 1)(Ag — 1) — (A6 — 1)6
Similar to previous cases, we take the difference obtained by subtracting the RHS of
the above inequality from the RHS of Theorem and rid the denominator. Let this
difference be Ag

Ag :=[(a1 — 1)(az — 1)(az — 1)(as — 1)(as —131)(a6 —1)(ay — 1) — 2187 — By] ¥ a’(1 — a).



Here we need to show Ag is positive. First, we must determine the domain of Ag. Using
the same logic as Case I and Case II, we have
«

Al 267A2 257A3 2474’44 237"45 ZAGZ

_a'

Q
because As > Ag = 7
test

,and a € (%, %] Now, we can apply the partial differentiation

0% Ng
=7a°—T7a’+1> 0.
OA0A0A0A 0804, ¢ T

For all o € (%, %] Thus, the partial derivative of Ag with respect to Ay, As, Az, Ay, As, Ag
is positive and minimized at Ag = ] e

-«

0’ Ag —14a" + 21a% — 7a® — a?
a = > 0.

8A1@A26A38A48A5 A6:1 —1 + «

—

o
The partial is again positive with respect to Ay, As, Az, Ay, Ag for all A5 > 7 , €

(%, %] by symmetry. Hence, the next partial derivative is increasing, and we again take
the minimum value

' Ng
0A10A20A30A,

280 — 56a” + 35a° — 7a® + ot
« a = 5 > 0.
As= JAg= (_1 + a)
11—« -«
For the same reason as above, using symmetry, we can evaluate the minimum value of
the partial derivative with A; =1 for i = 2, 3, 4,

D3N (660t — 11207 + 7002 — 150 + 3)at) -0
OAL0AOA |y pe— S gt (—1+ )2 ’
l—« l~«
0% Ag > (168044 — 33602 + 211a2 — 49a + 12)044 50
DALOA | Aymt =3 Ay — o A “1+a) ’
1l -« 1l —«
0 (6720 — 13450° + 8520% — 215 + 60)a?
e Q a = > 0.
OA1 | Ay=5,45=1,A4=3,45= A= (=14 a)?
1 —« 11—«

0Ag 0Ag 0Ag 0Ag
0Ay" 0A3" 0A," OA;5
are positive over the given domain. We then plug in the minimum values for Ay, As, Az, Ay,
and Aj to get a polynomial in terms of Ag and «, and we want to show that it is positive.
We define

Over a € (2, 2] By symmetry of Ag in Ay, Ay, A3, Ay, and As, all

A7 = AG

A1=6,A0=5,A3—4,A1=3,As=2
We must show Ay is positive over its domain. To do so, we normally apply the partial
differentiation test

P A7
0—Ag = 75600&5(1 — Oé) > 0,
O A,
i = 19320a% — 11760a° > 0
DAL 1 ag= a “ @ >0
1l -«
PPN; —210(1150% — 138a + 41)a®
— a = > 0,
aA6 Ag= _]. + v
—

14



02 14(13840® — 242702 4 1392a — 259)0°

Z = = >0
814% Ag= “ (_1 +a)2 7

11—«
1oAY,

A —10164a” + 21279a° — 14908 + 32400° + 1148a° — 3269a*
6

As=7 @ - (—1+a)3(

+ 57470 — 5872a* + 3204a — 720) > 0.

This confirms that A7 is increasing. We evaluate A; at its minimum:

1
a =———(51000" — 15354a" 4 20240a° — 16151a° + 9927a" — 7087a’

A1 (—1+ )

A6:1

+ 5872a% — 3204a + 720)a?) > 0.

This completes the subcase.

3.3.2. Subcase III(b). We know that Ps(x; = 2) > 0, so (x1, 22, &3,24; T5, T, T7) =
(1,1,1,1,1,1,2) is a solution to the inequality in Theorem [3.3] If

Y Y P Y Y

then a € (3, 5] because a7 € (3,4]. Let Let A; = a;- a for4 = 1,2,3,4,5,6. Rewriting the
equation by substituting A;, we yield
Gt 1 il
Ay Ay Az Ay A5 Ag T
Thus, by the Yau Geometric Conjecture for n=6, we have
7 Ps(z7 = 2) < T[(A; — 1)(Ay — 1) (A3 — 1)(Ay — 1)(A5 — 1)(Ag — 1) — (Ag — 1)°
+ Ag(As — 1)(As — 2)(As — 3)(As — 4)(As — )] := Bi.

and for the x; = 1 layer,

TPy (or = 1) £ T[(A = = (g S = (g S )
(As- 1;;?‘1 = 1)(4s- 122‘1)‘1 —1)(4s - 1;@?‘1 1) - (A 122?1 gy
(s 1;;?”@46- 122“ —1)(As - 1;“ — 2)(Ag - 122“ 3
(Ao 1;?1 —4)(4 - 122?1 —5)] = B».

7' Pr=T!(Ps(x7 = 1) + Ps(x7) = 2), so we can subtract the RHS of Theorem by the
sum-of the RHS of the above equalities and multiply by the denominator to get Ag. Note
that this difference is equal to Ay — 2059 - 64a5(1 — ).

Ag = A4 — 2059 - 640&6(1 — Oé).
Recall that we have
Al > 6,A2 > 5,A3 > 4,A4 > 3,A5 > 2 and Aﬁ > 1.

It has already been proven that A, is increasing when Ag > 2, so the same should be
true for Ag. Over this domain we only check the value of Ag at the minimum.

Ag =193344a" — 183872a° — 10656a° — 34736a* + 1128800
A1=6,A2=5,A3=4,A,=3,A5=2,Ag=2
15



— 4907202 — 94608« + 82080 > 0.

As for when Ag € (1,2], we can again plot Ag while fixing all values aside from Ag
and «, over the region on Maple or Mathematica and check for negative values, since the
remaining domain is finite. Testing the minimum,it is shown to be all positive over the
domain, and the subcase is complete.

3.3.3. Subcase III(c). We know that Ps(x; = 3) > 0, so (x1, 22, T3, 24, T5, T, T7) =
(1,1,1,1,1,1,3) is a solution to the inequality in Theorem . If

then o € (0, 1] because a7 € (3,4]. Let Let A; = a;-a for i = 1,2,3,4,5,6. Rewriting the
equation by substituting A;, we yield

Thus, by the Yau Geometric Conjecture for n=6, we have

71 Ps(r7 = 3) <7[(A1 — 1)(Az — 1)(A3 — 1)(As = 1)(As — 1)(As — 1) — (A6 — 1)°

For the x7 = 2 layer,

71 Py(an = 2) <T[(A, - 1;20‘ )4 - 1;[20‘ —1)( A - 1;20‘ C1)(As 1;20‘ _ )
(As'l—:;—ja_leﬁ‘ 1—;@204_1)_(146‘1?;!2&_1)6
(g I (g PRy, 122y
(A6‘1+2a_3)(146' 1—5&2(1—4)(%16' 1Jgja_5)] — B,

3av
And for the x; = 1 layer,
2+« 2+« 24+« 24+«

M = 1) <A T -y Yy 2R, 2y
(A 2% - 1) 20 - 1) = (A S 1 (A 2
(A6.2;a—1)(A6-Q;Q—z)(A6.2;0‘—3)(A6-2;O‘—4)
(Ag - 2;0‘ _5)] = By

Similar to previous cases, we take the difference obtained by subtracting the RHS of the
above inequality from the RHS of Theorem [3.3] Let this difference be Ag.
Ag = (&1 — 1)(@2 — 1)(&3 — 1)(@4 — 1)(&5 — 1)(@6 — 1)(@7 — 1) — 2187 — (Bl + B2 —+ Bg)

Here we need to show Ag is positive. In order to apply the partial differentiation test to
Ag, we must
Al Z 67A2 Z 57A3 Z 47A4 Z 37A5 Z AG > 1.

Now, we can apply the partial differentiation test
16



%Ay

= T 41300° + 6720° + 1400* — 14003 — 67202 —
IR, A0 A0 A0 A0, oo — A130aT 4 672a” + 14007 = 14007 = 67207 = 2dda

-+ 1003 > 0.
For all « € (0, 411] Thus, the partial derivative of Ag with respect to Ay, Ay, A3, Ay, As, Ag
is positive and minimized at Ag = 1.
PNy
81418142814381446145 Ag=1

= — 238a" — 22408 + 420° + 140a* + 4900 — 20402 — 1009«
+1003 > 0.

The partial is again positive with respect to Ay, Ay, A, Ag, Ag for all A5 > 1, a € (0, 5]
by symmetry. Hence, the next partial derivative is increasing, and we again take the
minimum value

* Ny
0A10A20A30A,
For the same reason as above, using symmetry, we can evaluate the minimum value of
the partial derivative with A; =1 for i = 2, 3,4

i (—1+a)?(1400° 4-308a* +3920° + 11202 4-232a+1003) > 0.
5=1,A6=1

PA
m A = —(—1 4 a)*(1120* + 30803 + 29402 + 470 + 1003) > 0,
A = (=1 + a)*(1400* + 3360 4 708a + 1003) > 0
OA10A5 | A3=1,4,=1,A5=1,45=1 ’
929 = (=1 + a)®(238a* + 946a + 1003) > 0
OA; | As=1,43=1,A4=1,A5=1,A6=1 '

0Ag 0Ag 0Ag 0Ag
0Ay" A3 DAL A5
are positive over the given domain. We then plug in the minimum values for Ay, As, Az, Ay,
and Aj to get a polynomial in terms of Ag and «, and we want to show that it is positive.
We define

Over a € (0, }1] By symmetry of Ag in Ay, As, A3, Ay, and As, all

Ay = Ay

A1=6,A0=5,A3=4,A1=3,As=2
We must show Ay is positive over its domain. To do so, we normally apply the partial
differentiation test

PA
87;0 = 62596800 + 4218480’ — 680400 + 680400 + 12927600 + 748440c > 0,
6
84A10 _ 5 4 3 2
- = 7560c(5440” + 290a* + 3120° 4 20002 — 3200 — 99)(—1 + a) > 0,
Ay _ 5 s 3 >
- = —18900x(5960° 4 514a’ + 2460° — 4130° — 4120 4 198)(—1 + «),
8146 Ag=1
O?A
aT’;O T —378(302a° + 154a* + 16650 + 113502 — 1480a + 330)(—1 + ) > 0,
6 6=
OA
3 A“) L =857430a" — 4870260° — 83961a° — 6319350 + 8457300 — 168030/
6 6=

— 943155 + 722160 > 0.
17



This confirms that A, is increasing. We evaluate Aq at its minimum:

Aol | =1450782a" — 1435995a° + 268254a° — 665091 + 272790a° + 9060030
6=1

— 1518903« 4- 722160 > 0.
This completes the subcase, therefore completing the proof for Case III. O

3.4. Case IV. In this case, [ar| = 5. Plugging that into the Main Theorem, we obtain
the following

Theorem 3.4. Let a1 > as > as > a4 > as > ag > ay > 1 be real numbers and let Py be

T x x x x x
the number of positive integral solutions of it A S AL <1 lIf

a Qs as a4 as Qg az
P; >0 and 4 < a; <5, then
7! P7 S (a1 - 1)(@2 - 1)((13 - 1)(@4 - 1)((15 - ].)(CLG - 1)((17 - ].) — 16384.

Proof. Since a; € (4, 5], we have four levels to consider: x7 = 1,27 = 2,27 = 3 and x7; = 4.
There must be solutions on the x7; = 1 level. Hence, we have the four following subcases:
Subcase IV (a): Ps(x7; =4) = Ps(x7 = 3) = Fs(z7 = 2). = 0,
Subcase IV(b). P6<I7 = ) = P6((L’7 = 3) = O,P6(1E7 = 2) > 0,
Subcase IV(c): Ps(z7 =4) =0, Ps(x7 = 3) > 0, Ps(a7 =2) > 0,
Subcase IV(d): Ps(z7 =4) > 0, Ps(x7 =3) > 0, Ps(x7=2) > 0.

3.4.1. Case IV(a). We know that (1, e, 3, 24, 5, 26, v7) = (1,1,1,1,1,1,1) is a solution
to the inequality in Theorem If

1 1 1 1 1 1 1
-+t —+ -+t =+—<1-—:=a
ai as as ay as ag ar
Then o € (2, 2].Let A; = a;-a fori = 1,2, 3,4, 5, 6. Rewriting the equation by substituting
15

A;, we yield
1+1+1+1+1_|_1<1
Al A2 Ag A4 AE) Aﬁ_ '

Thus, by the Yau Geometric Conjecture for n=6, we have

P =T Ps(xg =1) < 7{(Ar — 1)(A2 — 1)(As — 1)(As — 1)(A5 — 1)(As — 1) — pe([As]))-

We know the minimum value for [Ag] is 4, as Ag = ag - a > % - 4.Note that pg(v) is

increasing for v > 4, so we can plug in [Ag] = 4 to maximize the RHS of the above
inequality. This gives

VP, = T Py(ar = 1) < T[(A1 — 1)(As — 1) (A5 — 1)(Ay — 1)(As — 1)(Ag — 1) — 729)] := B,

Subtracting the upper bound of this inequality from the RHS of Theorem [3.4] then getting
rid of the denominator, we define Aq;

All = [7' P7 S (a,l—1)(&2—1)(&3—1)((14—1)(&5—1)(&6—1)(0,7—1)—16384—B1]OZ5(1—O{>.

Here we need to show Ay, is positive. First, we must determine the domain of Ay;. Using
the same logic as previous cases, we have

> 3.

A1267A2257A324,A42A52A621a

—«
Now, we can apply the partial differentiation test
86A11

=705 -7 +1>0.
DA, 0A,0A0A,04.04, ¢ Tl b=
18




For all a € (%, %] Thus, the partial derivative of Ay with respect to Ay, As, Az, Ay, A5, Ag
Q@

is positive and minimized at Ag =

1—a’
Ay _ —14a" + 21a% — 7a® — o2 =0
OAL0A0A50A,0A, Ao @ = '

-1+«

—

a
The partial is again positive with respect to Ay, As, Az, Ay, Ag for all A5 > 1 , €

(%, %] by symmetry. Hence, the next partial derivative is increasing, and we again take

the minimum value
84A 11
0A10A50A30A,

~ 28a® — 560" + 35a° — Ta® + o

> 0.
(—1+a)

(0% (07
As= A=
-« -«

For the same reason as above, using symmetry, we can evaluate the minimum value of
the partial derivative with A; =1 for i = 2, 3,4

ORVANE] — (560t — 1403 + 12602 = 48« + T)a®
_— « a a = 3 > 0,
DA OADA a4 Y (—1+o)

l—« l—« l—«

0?Ag _ —(168a" —420a® 4 3770* — 143a + 21)a”

OA10AY | pgmapyme— g E T (—1+ «a)?

11—« l—« 11—«

> 0,
0Ng > —(672044 — 134503 + 85202 — 215 + 60)044
aAl A2:5,A3:4,A4: @ ,A5= a ,A6: @ » (_1 + a)Q
11—« 11—« -«

> 0.

Aqq is symmetric for all A;,7 = 1,2,3,4,5,6. Therefore, Ay, is increasing over the entire
given domain for ao. We see that Ag = aga > 6 - % = g. Therefore, the minimum is

1
Aqy = (1545591a° — 15472550° + 19440a* — 1166400° + 39366002
A1=Ay=A3=A4=As=A¢=5 064

— 708588cx + 531441) > 0,

over the interval. This completes the subcase.

3.4.2. Case IV(b). We know that Ps(z7 = 2) > 0, so
(xla Tg,X3,T4,Ts, $6,$7) = (]-7 17 17 ]-a ]-7 17 2)

is a.solution to the inequality in Theorem [3.4] If

1 1 1 1 1 1 2
— b= —+—+—+—<1- =g,
ai 5) as Q4 as Qg as
then a € (%, %] because a; € (4,5]. Let A; = a; - for i = 1,2,3,4,5,6. Rewriting the
equation by substituting A;, we yield
1 n 1 n 1 n 1 n 1 N 1 <1
A Ay Az Ay A Ag T

Thus, by the Yau Number Theoretic Conjecture for n=6, we have

7! Ps(27 = 2) <T[(A; — 1)(Ay — 1)(As — 1)(Ay — 1)(A5 — 1)(Ag — 1) — (A — 1)°
19



and for the x; = 1 layer

7 Pylary = 2) §7[(A1.1;—aa_1)(142.1;;04_1)(/13-12204_1)(144_1;-0[04_1)
Ay T8 (g 0y (g (- LY
(Ag - 124;04_5)] = By.

TP = T (FPs(xr = 1) + Ps(x7) = 2), so we can subtract the RHS of Theorem by
the sum of the RHS of the above equalities to get Ajs, and we can rid the denominator
without changing the sign. Then, we merely need to apply the partial differentiation test
to AIQ

Ajg = 6408 (1—a)[(a1—1)(az—1)(az—1)(as—1)(as—1)(ag—1)(a;=1) =16384— (B, + By)].

We are trying to show that it is positive for
2a

Al 267"42 257"43247144237145 2A6> 1

Now, we can apply the partial differentiation test

86A12

=4 7T _ 41 6 5 4 3 2 ) )
OA,0 450 Asd A0 A0 A, dda 3a” +63a” + 35a” — 35a” — 63a” 4+ 29+ 57 > 0
For all a € (%, g] Thus, the partial derivative of A5 with respect to Ay, As, Az, Ay, A5, Ag
. .. C 2c
is positive and minimized at Ag =

ORVAND A —4(343a" — 42008 + 147a° — 3503 — 1202 + 250 + 16)

DA 0A0A50A,0451,, 2 T “1ta

1-a

> 0.

, O €

2
The partial is again positive with respect to Ay, As, Az, Ay, Ag for all A5 > 7 a

(%, %) by symmetry. Hence, the next partial derivative is increasing, and we again take

the minimum value:
0*Aqs 1602

= (259a” — 399a° + 210a° — 420* — 170 + 52
DADA0A0A, |, _, 20 ST @ 2ot = asan = Ham+ oa

—a
+12a+4) > 0.

Over the domain of «. For the same reason as above, using symmetry, we can evaluate
the minimum value of the partial derivative with A; =1 for ¢ = 2, 3, 4:
63A12 —64043

DAIOAD A,y 0 2% T (C1ta)
11—«

(196a" — 3640 + 252a° — 83a* 4 4a® 4 602

+4a+1) >0,
20



A 64a’
12 a0 = (59507 — 12950° + 11070 — 485a* + 1010?
-«
+3a? 4+ 5a+1) >0,
OA —64a°
12 0 = (18137 — 4535a° + 4619a° — 25050" + 75507

94 Ar=Ag=As=As=do=1 (—1+a)

—

—970* + 13+ 1) > 0.

Over the interval o € (%, g] By symmetry of Ao in Ay, A, A3, Ay, and As, all

0A 0A1y 0A1p OAp
0Ay " 0As " 0A,  0As
are positive over the given domain. We then plug in the minimum values for Ay, As, Az, Ay,

and Aj to get a polynomial in terms of Ag and «, and we want to show that it is positive.
We define

Az = Aj .
A1=6,A2=5A3=4,A4=3,A5=2

We must show that Ay is positive for all a € (3, 2] and Ag > 1. Now we apply the partial

differentiation test

PA
&4513 = —15120a(33a°® — 28a° +5a* — 5a? — 4a — 1) > 0,
6
34A13 2 5 4 3 2
S 90 = 33600%(535a° — 137a* + 118a° + 62a% + 3a — 5) > 0,
‘ A6:1 — o
D3Aq3 —1680a3(1915a° — 1253 + 5382 — 1402 — 37a + 3
3 200 — > 0,
OAG | = —1+a
11—«
0?Ay3 44804 (8470 — 8801a* + 401003 — 84402 + 32a + 13
2 200 — 2 > 07
0AZ |, _ (=1+a)
11—«
B3 ‘ 90 =r———=(4052160" — 550738a° 4 280615a° — 57317a” — 1539a°
0Ag 1, 2 (-1+a)®
11—«

+ 17367a° — 21637a* — 183a® + 23031a* — 19305 + 5130) > 0.

Over the set domain. Therefore, A3 is increasing. We confirm that it is positive by

evaluating it at its minimum
32«

JANE ) 2 zm(97268a10 — 261798a° + 3696550 — 321716a” + 157955a°
=

— 318440 — 6379a* + 60760 + 1565a% — 4158 + 1440) > 0.

1l -«

This completes the subcase.
21



3.4.3. Case IV(c). We know that Ps(z7 = 3) > 0, so
(xla Lo, T3,T4,Ts, ZL‘G,ZL’7) = (]-7 17 17 1a ]-7 17 3)

is a solution to the inequality in Theorem [3.4] If

1 1 1 1 1 1 3
— ==+ —F—F+ =<1 =aq
ai a9 as Qay as ag ar
then o € (;11, %] because a; € (4,5]. Let Let A; = a; -« for i = 1,2,3,4,5,6. Rewriting the
equation by substituting A;, we yield
1 1 1 1 1

Thus, by the Yau Number Theoretic Conjecture for n = 6, we have
TV Ps(x7 = 3) <7[(A1 — 1)(Ay — 1)(Az — 1)(As — 1)(A5 — 1)(As — 1) =(Ae—1)°
-+ Aﬁ(AG — 1)<A6 — 2)(A6 — 3)<A6 — 4)(A6 — 5)] = Bl,

for the x; = 2 layer

71 Pyl = 2) <T[(A; - - ;2@ (A, gjo‘ 1Ay gjo‘ L)AL ;20‘ _1)
(A 22 1) (g 2 1) = (A T = 1 (g )
(A - 1_50?@—1)(A6' 1—;—(3&_2)<A6_ 1—;)—04204_3>(A6.1—§06204_4)
14 2«
(Ag - ;a —5)] == By,
and for the x; = 1 layer
7 Py(ary = 1) <T[(A; - 2;;0‘ )4, 2;‘)‘ C1)(As - 2;;0‘ ~1)(A, - 2;0‘ _1)
(A oL (A TS = 1) = (A 0 1 (g 2
(Ag 52— (A 2 =) 2 =34 21—
2+«
(g =2 —5)]:= By

Similar to previous cases, we take the difference obtained by subtracting the RHS of
the above inequality from the RHS of Theorem and eliminate the denominator. Let
this difference be Aqy.

A14 — 729&6(1—(1)[(&1—1)(CLQ—]_)(CLg—1)(&4-1)(@5—1)(CLG—1)(&7—1)—16384—(31+B2—|—Bg)]

Here we need to show Ay4 is positive. In order to apply the partial differentiation test to
A1y, we must first determine its domain

A1 > 6,142 > 5,143 > 4,A4 > 3,A5 > 2, and A()’ > 1.
Now, we can apply the partial differentiation test

66A14
0A10A30A30A40A50A4

=5558a’ — 41300’ + 672a° + 140a* — 140a° — 672a° — 244a

+ 1003 > 0.
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For all o € (%1, %] Thus, the partial derivative of A4 with respect to Ay, As, Az, Ay, A5, Ag

is positive and minimized at Ag = 1.
85A14

0A10A20A30A40A5 | As=1 a o’ + 42a” + 1400 + 490« o o

-+ 1003 > 0.

The partial is again positive with respect to Ay, A, A3, Ay, Ag for all A5 > 1, a € (i, %]

by symmetry. Hence, the next partial derivative is increasing, and we again take the
minimum value

0*A
0A10A5,0A30A,
For the same reason as above, using symmetry, we can evaluate the minimum value of
the partial derivative with A; =1 for i = 2, 3,4

i = (—14®)*(140a” +308a™* +392a° + 1120° 4232+ 1003) > 0.
5=1,A46=

83A14
_ g0 = (-1 3(112a* + 308 + 29402 + 470+ 1003) > 0
0A10A30A3 1 44=1,A5=1,A6=1 ( - a> ( o “r “ol o ) ’
A = (—1+ a)*(140a® + 3360 +.708a + 1003) > 0
0A10A5 | A3=1,44=1,A5=1,46=1 ’
014 = —(—1+ @)®(238a” 4 946 + 1003) > 0
OAy | Ay=1,43=1,A4=1,45=1,A6=1 ’

O0Ay 0A1 0A1 OAy
0Ay " 0As " 0A, " 0As
are positive over the given domain. We then plug in the minimum values for Ay, As, Az, Ay,

and Aj to get a polynomial in terms of Ag and o, and we want to show that it is positive.
We define

Over o € (1, 2]. By symmetry of Ayyin Ay, Az, As, Ay, and A, all

A15 = A14

A1=6,A2=5,A3=4, Ay=3,A5=2
We must show Aj; is positive over its domain. To do so, we normally apply the partial
differentiation test

PA
5 Af = —62596800" + 42184800 — 6804000 + 680400a° 4 12927600° 4 748440 > 0,
6
L5 — 7560 5 1 3 2
T = a (5440’ 4+ 290a* 4+ 312a° + 2000 — 32ac — 99)(—1 + ) > 0,
0AG lae=1
PPA f
e — —1890a(5960° + 5140 + 2460° — 41302 — 4120 + 198)(—1 + a),
0AY Tag=1
9?A
W;f’ . —378a(302a° + 154a* + 16650 + 113502 — 1480a + 330)(—1 + a) > 0,
6 1A=l
OA
5 A“’ , =857430a" — 4870260° — 83961a° — 6319350 + 8457300 — 16803
6 1Ae=1

— 943155 + 722160 > 0.

This confirms that A5 is increasing. We evaluate Aj5 at its minimum:

AN ) =1450782a" — 14359950° + 2682540° — 665091a* + 2727900 + 906003/
6=1
— 1518903cr + 722160 > 0.

This completes the proof for this subcase.
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3.4.4. Case 1V(d). We know that Ps(x7 =4) > 0, so
('Tla T2, T3,T4,Ts, x67$7> = (17 17 17 17 17 174)

is a solution to the inequality in Theorem [3.4] If

then a € (0, ] because a7 € (4,5]. Let A; = a; - a for i = 1,2,3,4,5,6. Rewriting the
equation by substituting A;, we yield
1 1 1 1 1 1
R A R RS
Thus, by the Yau Number Theoretic Conjecture for n = 6, we have
T Ps(wr = 4) <T[(A1 = 1)(As — 1)(A3 = 1)(As = 1)(A5 — 1)(Ag — 1) — (A6 ~ 1)°
+ Ag(Ag — 1)(As — 2)(As — 3)(As — 4)(Ag — 5)] := By,

for the x7 = 3 layer

7 Py = 3) <T[(Ar- 20— 1)(Ay - 2% 1)y T2 a1
(As'11_@30[—1)(146'11_0?&—1)—(A6'1Za3a—1)6+(146'11_;&)
(A T30 a1y (f I gy(a, 13y

1 o'

(Ao % —5)] = By,

for the x7 = 2 layer

7!P6($7=2)§7[(A1~21—(3a—1)(142-21—@2(1—1)(143 21—a2a_ )(A4.2jl—a2a_ )
(s 5% SN2 = 1) = (g T = 1 (g )
(A6'2Za20d—1)(146‘21—a2a— )(A6‘21_&2a— )(Aﬁ'zl_ja— )
42 - 9) = B,

and for the x7 = 1 layer

3+« 3+« 3+« 3+«
! —1) < : _ . _ : _ : _
7' Ps(zr = 1) <6[(A44 10 1)(As 10 1)(As 10 1)(Ay 10 )
3+« 3+« 3+« 6 3+«
(A5 === D(As - — = 1) = (A - — 1"+ (As - ——)
3+« 3+« 3+«
(A - —— = DA - —— = 2)(As - —— = 3)
3+« 3+«

Similar to previous cases, we take the difference obtained by subtracting the RHS of
the above inequality from the RHS of Theorem and eliminate the denominator. Let
this difference be Aqg.

A :=2048a°%(1 — a)[(a; — 1)(az — 1)(az — 1)(as — 1)(as — 1)(ag — 1)(ay — 1) — 16384
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— (B1 + By + Bs + By)].
Here we need to show Ajg is positive. In order to apply the partial differentiation test to
Aqg, we must first determine its domain
Ay >6,A,>5,A3>4,A4 > 3, A5 > 2, and Ag > 1.
Now, we can apply the partial differentiation test
ATANTY

=17115a" — 10605a° + 1575a° + 175a* — 175a° — 157502
DA, 040430 A,0A:0 A, « @ oroat+ Liva @ «

— 1683 + 3365 > 0.

For all a € (0, %] Thus, the partial derivative of A with respect to Ay, Ao, As, Ay, As, Ag
is positive and minimized at Ag = 1.

0410420 A50A40A5 1 45=1 @ a”+ 1ida” + 1ivar + o’ =+ 633

— 3963 + 3365 > 0.

The partial is again positive with respect to A;, Ao, A3, Ay, Ag for all A5 > 1, a € (0, %]
by symmetry. Hence, the next partial derivative is increasing; and we again take the
minimum value

oAANTY
0A10A20A30A,
For the same reason as above, using symmetry, we can evaluate the minimum value of
the partial derivative with A; =1 for ¢ = 2, 3, 4,

.y = (—14a)*(539a°+1113a* +15820°4+-11060*4+-487a+3365) > 0.
5=1,A6=1

3
DA DA DA Alaailg Aot tag — (=14 a)?(413a* 4 12040” + 1638a* + 1572a + 3365) > 0,
0L = (=14 )*(539a” + 1631a” + 2657 + 3365) > 0
0A10As | A3=1,A4=1,A5=1,A¢=1 ’
OB = —(—1+a)*(108507 + 37420 + 3365) > 0.
0A7 |Ay=1,A3=1,A4,=1,A5=1,A6=1

0A15 0A15 0A15 OAse
0Ay " 0A3 " 0A,  0A;
are positive over the given domain. We then plug in the minimum values for Ay, As, Az, Ay,

and Aj to get a polynomial in terms of Ag and «, and we want to show that it is positive.
We define

Over a € (0, %] By symmetry of Agin Ay, A, A3, Ay, and As, all

A17 = Alg .
A1=6,A2=5,A3=4,A4,=3,A5=2

We must show A7 is positive over its domain. To do so, we normally apply the partial
differentiation test

PA
5 A5” = —196560000 +10886400a.°— 15120000’ +15120000* +-45964800° +41 73120 > 0,
6
A
| =67200(20310” + 1271a* + 13260° + 104602 + 67a — 621)(—1 + a) > 0,
8146 Ag=1
PBA
;- = —3360c(12130° 4 1073c* + 7380 — 6700 — 14390 + 621)(—1 + o),
0A; 146=1
A
3 Ag” T —224a(11250° 4 2450 +96020° + 132900 — 140550 + 3105)(—1+ ) > 0,
6 'Ae=1
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0Ag

) =2643480a" — 1120368a° + 1880880 — 36409120 + 3701640a> + 20651202
6=1

— 3418200a + 2422800 > 0.

This confirms that A7 is increasing. We evaluate A7 at its minimum:

A, =32964056a" — 330128160’ + 1348312a° — 25920160 + 588168 + 348040002
6=1
— 5198904 + 2422800 > 0.
This completes the subcase, therefore completing the proof for Case IV. U

3.5. Case V. In this case, [a;] = 6. Plugging that into the Main Theorem, we obtain
the following

Theorem 3.5. Let a; > ag > a3 > aq4 > as > ag > ay > 1 be real numbers and let P; be
T T x x x x x
the number of positive integral solutions of L2 BT e T, If
aq a9 as Q4 as (053 ar
P; >0 and 5 < a; <6, then
7P, < (a; —1)(ag —1)(ag — 1)(as — 1)(a5 — 1)(ag —1)(az — 1) — 78125.
Proof. Since a; € (5,6], we have five levels to consider: z; =1,27 = 2,27y = 3,27 =

4, and x7; = 5. There must be solutions on the x; = 1 level. Hence, we have the five
following subcases:

Subcase V(a): P6(1E7 = 5) = PG(ZL"y = 4) S P6(£E7 = 3) = P6(1'7 = ) = 0,
Subcase V(b): Ps(x7 =5) = Ps(v7; =4)= Fs(x7 =3) =0, Ps(x7 = 2) > 0,
Subcase V(C): P6($7 = 5) = P6(337 = 4) =0, P6($7 = 3) > 0,P6 Ty = ) > 0,
Subcase V(d): Ps(x7 =5) =0, Ps(x7 =4) > 0, Ps(x7 = 3) > 0, Ps(x7 = 2) > 0,
Subcase V(e): FPs(x7 =5) > 0, Ps(x7 =4) > 0, Ps(x7 =3) > 0, Ps(x7 =2) > 0

3.5.1. Case V(a). We know that (1, %2, x3, x4, x5, 26, x7) = (1,1,1,1,1,1, 1) is a solution
to the inequality in Theorem If

then o € (%, %] Let A; = a;-afori = 1,2,3,4,5,6. Rewriting the equation by substituting
A;, we yield

1+1+1+1+1—|—1<1

A1 A2 Ag A4 A5 AG -

Thus, by the Yau Geometric Conjecture for n=6, we have
NP =T Fs(v7 = 1) < 7[(A1 — 1)(A2 — 1)(As — 1)(Ag — 1)(As — 1)(As — 1) — ps([As])]-

We know the minimum value for [Ag] is 5, as Ag = ag - @ > % - 6. Note that pg(v) is
increasing for v > 5, so we can plug in [Ag] = 5 to maximize the RHS of the above
inequality. This gives

Similar to previous cases, we take the difference obtained by subtracting the RHS of
the above inequality from the RHS of Theorem [3.5] and rid the denominator. Let this
difference be Ay

Ag = [(a1 — 1)(az — 1)(as — 1)(as — 1)(as 2—6 1)(ag — 1)(a7 — 1) — 78125 — Bi]a’(1 — a).



Here we need to show Ajg is positive. First, we must determine the domain of Ag. Using
the same logic as previous cases, we have

A >6,A2>5,A3> Ay > Ay > Ag >

1—a’

Now, we can apply the partial differentiation test

(96A18 6
=7a% - 72" +1>0.
MO0 0A, T

For all a € (3, 2] Thus, the partial derivative of A with respect to Ay, As, As, A4, As, Ag
is positive and minimized at Ag = 1 e

-«

AN —14a” +21a8 — 7a® — o
a = > 0.

8A18A26A38A48A5 Ag= 1 -1 + «

—

The partial is again positive with respect to Ay, A, Az, Ay, Ag for all A5 > , €

(5, 6] by symmetry. Hence, the next partial derivative is increasing, and we again take
the minimum value

34A18
0A10A20A30A,

28a® — 56a” +35a° — 7a’ + at
@ a = 5 > 0.
As= VAg= (_1 + a)
1 -« -«
For the same reason as above, using symmetry, we can evaluate the minimum value of
the partial derivative with A; =1 for i = 2,3, 4.

P Aig ~(56at — 14003 + 12602 — 48 + T)a’®

T = = >0
0A10A0A; gL 4oL O (—1+a) !
— 1l -« 1 -«
82A18
DAOAY gyt Y YO
— 11—« 1l -« 1l -«
- (1120° — 336" + 3930” — 2240” + G3a — T)a” _
( (~1+a) |
(8% (6% (0% (8%
9 A2:5’A3:1 — o/AFl — a’Aszl — a’Aﬁzl —
__(448@5——1345@4—%1573a3——896@2%—252a——28)a5:>O
- (=1 +a)! |

Aig is symmetric for all A;,7 = 1,2,3,4,5,6. Therefore, A;g is increasing over the entire
given domain for ae. We only need to evaluate Ag at its minimum. If Ag > 5,

Aig =8529405 — 853240° + 400a* — 27500 + 1062502 — 21875
A1=6,A0=A3=A3=A5=As=5

+ 18750 > 0,

over the interval. Now we consider the case where 4 < A6 < 5. We set the value

for Ag which minimizes Ajg. Thus, we have Ay = A3 = A4 = As; = Ag = x for some
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x € (4,5], and A; > % We consider
x —_—

1
Ag = ((352° — 1752 4 3502° — 3502% 4 496292 — 247305)a’
Ay=—2 Ay=Az=As=As=Ag=c T — D

+ (—352° 4+ 1752* — 3502° 4 3452 — 49604z + 247300)a” + (102°® — 452%)a*
+ (=102 + 4020 + (52° — 152")a* — ax® + 2%)) > 0,

for a € (2,2

=, ¢) and = € (4,5]. This completes the subcase.
3.5.2. Case V(b). We know that (21, xe, 3, x4, x5, e, v7) = (1,1,1,1,1,1,2) is a solution

to the inequality in Theorem If

1 1 1 1 1 1 2

— =ttt —+—<1- =g,

ay a2 az a4 a5 Gg ary
then o € (g, %] Let A; = a;-afori = 1,2, 3,4, 5, 6. Rewriting the equation by substituting
A;, we yield

1+1+1+1+1—|—1<1
Al A2 Ag A4 AS AG_‘

Thus, by the Yau Geometric Conjecture for n=6, we have

TV Py =T Ps(z7 = 2) < 7[(A; — 1)(Ay — 1)(Az — 1)(Ag — 1)(A5 — 1)(Ag — 1) — ps([As])]-

We know the minimum value for [Ag] is 4, as Ag = ag - a > 2 - 6.Note that pg(v) is
increasing for v > 4, so we can plug in [Ag] = 4 to maximize the RHS of the above

inequality. This gives

and for the 7 = 1 layer

1+« 1+« 1+« 1+«
' P, =2 < TI(A; - — . —1)(As - —1)(Ay - —1
7 Ps(27 = 2) < T[(Ay 1) (4, 5 )(As o )(Ay 50 )
1+« 1+«
(As - o —1)(Ag - 5 — 1) —4096] := Bs.

Similar to previous cases, we take the difference obtained by subtracting the RHS of
the above inequality from the RHS of Theorem and rid the denominator. Let this
difference be A

Alg = [(a1—1)((12—1)(a3—1)(a4—1)(a5—1)(a6—1)(a7—1)—78125—(31—1—32)]64046(1—@)

Here we need to show Ay is positive. First, we must determine the domain of Ag. Using
the samelogic as previous cases, we have
2c

1—a’

Ay 26,42 >5,A3 >4, A4 > A5 > Ag >

Now, we can apply the partial differentiation test

= 455a" — 413a° + 63a° + 350" — 350° — 63a® + 29 + 57 > 0
DA 0A0 404,004, 0 @7 bt Shan = ovat = hdar A a0l = 0,
for all o € (%, %] Thus, the partial derivative of A9 with respect to Ay, As, Az, Ay, A5, Ag
. o S 2c0
is positive and minimized at Ag = 1 .
-«

9’ A1 _ —4a(343a" — 420a° 4 147a° — 35a° — 12a* 4 25a + 16

0A10A0A30A,0451, _ 2~ “1+a

l—«
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> 0.

, O €

2
The partial is again positive with respect to Ay, As, Az, Ay, Ag for all A5 > 7 a

(g, %] by symmetry. Hence, the next partial derivative is increasing, and we again take
the minimum value
DA10A0A30A, 1, _ 2>, 2
l—a 71—«
~ 1602(2590" — 399a° 4 2100 — 42a* — 170 4 50° + 12a 4 4)

>0.

(—1+ «a)?
For the same reason as above, using symmetry, we can evaluate the minimum value of
the partial derivative with A; =1 for ¢ = 2, 3,4.
PN
8A18A2(9A3‘

2 2a 200 T
Asg Aﬁ

Ay= As= Ag=
11—« 1l—« 11—«

64a3(196a” — 364a° + 25205 — 83a? + 4a® + 6a* + 4a + 1)
1T ay

>0,

0?Aqg
0A104,

[0 (6% —
Ag

(6%
Az=4,A4= JAs= VA=
11—« 11—« 1l—a

—640a3(581a” — 1092a8 + 769a° — 2520 + 302 + 20a? + 15 + 4)

>0
(-1 +o) |

04,

Q Q@ a =

A2=5,Ag=4,As= T As=T— Ndo=g——

—6403(2310a7 — 4381a% +3117a° — 1004a* — 260® + 8502 + Tla + 20)
—1+a)

Aqg is symmetric for all A;,7 =1,2,3,4,5,6. Therefore, Ay is increasing over the entire

given domain for av. We only need to evaluate A9 at its minimum. If Ag > 5,

> 0.

Aqo —6186991a" — 61377530’ + 183675a° + 1238750
A1=6,A2=A3=A4=As=A=5

+ 55812507 — 79687502 — 484375 + 890625,

2

over the interval. Now we consider the case where 3 < Ag < 5. We set the value

—«
for' Ag which minimizes Aj9. Thus, we have Ay = A3 = Ay = A5 = Ag = z for some

x € (3y5], and Ay > LS We consider
x —

A -
Alzﬁ’A2:A3:A4:A5:A6:I

1
—5((—7x6 +23802° — 121802 4 257602 — 2856022 + 43639042 — 21738880)a’
l’ —

+ (—212° — 18202° + 8820x* — 168002° + 170402% — 4356864z + 21738240)a’
+ (=725 + 2802° — 840" — 48023 + 29602° — 3840x)a” + (352° — 2802° + 1320z

— 24002° + 216022)a” + (352° — 1002° + 2202 + 3202°%)a®
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+ (=712°% 4 1802° — 5402*)a* — 21aa® + 572%) > 0.
for v € (£, %] and « € (3,5]. This completes the subcase.

3.5.3. Case V(c¢). We know that (1, xe, 3, x4, x5, e, v7) = (1,1,1,1,1,1,3) is a solution
to the inequality in Theorem If

1 1 1 1 1 1 3
— -+ -+ —F+—+—<1-—=q,
ai a9 as ay as ag ar
Then v € (2, 3].Let 4; = a;-afori = 1,2,3,4,5,6. Rewriting the equation by substituting
A;, we yield
1+1+1+1+1+1<1
Al AQ A3 A4 A5 AG -
Thus, by the Yau Geometric Conjecture for n=6, we have

TP =T FPs(rr =3) <T[(A = 1)(A2 — 1)(A3 — 1)(Ay — 1)(A5 — 1)(As —1) =ps([As])].

We know the minimum value for [Ag] is 3, as Ag = ag - a > % - 6:Note that pg(v) is
increasing for v > 3, so we can plug in [Ag] = 3 to maximize the RHS of the above

inequality. This gives
7Py = 71 Pylarr = 8) < TI(Ar — 1)(As — 1)(As — 1)(As — (A= 1)(As — 1) — 64)] = By,
for the x7; = 2 layer

71 Pafarr = 2) <T[(Ay - 220 1) T2 )y T2 (a2
(A5 2t = (A S )= 2= By,
and for the x7 = 1 layer
T Pyer = 1) <T[(A; - 2% 1)y - 2;;0‘ —1)(As - 2;‘3‘ )4, - 2;&0‘ _1)
(As - 2;0‘ =) (A 2;0‘ —1) =39

Similar to previous cases, we take the difference obtained by subtracting the RHS of
the above inequality from the RHS of Theorem and rid the denominator. Let this
difference be Agyg.

AQD = 729046(1—a)[(a1—1)(@2—1)(a3—1)(a4—1)(a5—1)(aﬁ—l)(a7—1)—78125—(Bl+Bg+Bg)].

Here we need to show A is positive. First, we must determine the domain of Ayy. Using
the samelogic as previous cases, we have
3av

A1 >6,A>5,A3> 4,4, >3, A5 > Ag > 1

Now, we can apply the partial differentiation test

= 5558a" —4130a°+672a° +140a* — 1400 —6720° — 244041003 > 0.
0,050,040 450 A, @ @bz idla e mhrRarme e 10U =
For all o € (%, %] Thus, the partial derivative of Aoy with respect to Ay, Ay, Az, Ay, As, Ag
. o S 3av
is positive and minimized at Ag = 1 .
—«
0A10A0A30A,0451, _ 32~

l—«
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—3a(7490a" — 7364a° + 2184a° — T0a* — 3500 — 618a% + 167 + 748)

14+«
> 0.

o
, O €

The partial is again positive with respect to Ay, As, Az, Ay, Ag for all A5 >

(5, 2] by symmetry. Hence, the next partial derivative is increasing, and we again take
the minimum value

9" gy B
041040404, 1, 3>, 3¢
11—« 1l -«
902(101087 — 1237608 + 52500° — 854a* — 4720% — 4170 + 4120 + 536)
(=1 +a)?
> 0.

For the same reason as above, using symmetry, we can evaluate the minimum value of
the partial derivative with A; =1 for i = 2, 3,4

OAA0A |y, 30, 30
11—« 11—«
B 2702(6552a" — 826000 + 36120 — 468at = 27703 — 4892 + 252a + 536)
B (=14 a)?
> 0,
0% Ay

3 3
0A104, Az=4,A4=3,A5= a Ae= a
11—« 1=«
B 27042(19404047 — 2489205 +109680° — 1203a* — 53502 — 2040a? + 528 + 2144

(—1+a)?
>0,
Ay
11—« 1—«
B 2702(76986a" — 9989605 + 44115a° — 45000 — 5090 — 1014002 + 720 + 10720)
- (—1+ «a)?
> 0.

Aqg is symmetric for all A;,i = 1,2,3,4,5,6. Therefore, Ay is increasing over the entire
given domain for ae. We only need to evaluate Ay at its minimum. If Ag > 4,

AV =61123110a" — 59876259a° + 1353159a° — 598638
A1=6,A9=5,A3=As=As=Ac=4

+ 16872960 + 205459202 — 9903360 + 7703040,

A6 < 4. We set the value

for Ag which minimizes Ayy. Thus, we have Ay = A3 = A4 = As; = Ag = x for some
31

over the interval. Now we consider the case where 2 <



x € (2,4], and A; > % We consider
x —_—

Az
Ar=% Ay=Az=Ay=As=As=c

1
= —5((—238x6 + 308702° — 160650z + 3515402 — 40824027 + 52840836
I‘ —

— 262979460)a” + (—2242° — 182702 + 88830z* — 170100z° + 1749602

— 52698681z + 262968525)a’ + (422° + 25202° — 75602* — 97202 + 6196522
— 87480x)a” + (14025 — 252025 + 172802* — 526502 + 619652%)a* + (49028

— 36002° + 132302* — 97202%)a® 4 (—2042° 4 19352° — 58052*)a? — 10090z’
+10032°%) > 0,

for a € (2,3] and x € (2,4]. This completes the subcase.
3.5.4. Case V(d). We know that (z1,xs, x3, x4, x5, 26, x7) = (1,1,1,1,1,1,4) is a solution

to the inequality in Theorem If

1 1 1 1 1 1 4
— et —+ = <1=— =0,
ai as as ay as ag ar
then o € (%, %] Let A; = a;-afori = 1,2, 3,4, 5,6. Rewriting the equation by substituting

A;, we yield
1+1+1+1+1—|—1<1
Al A2 A3 A4 A5 AG -
Thus, by the Yau Geometric Conjecture for n=6, we have
TP =T Ps(z7 = 4) < 7[(Ar — 1)(As = 1) (A3 — 1)(As — 1) (A5 — 1) (A6 — 1) — pe([As]))-

We know the minimum value for [Ag] is 2, as A = ag - @ > £ - 6.Note that pg(v) is
increasing for v > 2, so we can plug.in [Ag] = 2 to maximize the RHS of the above
inequality. This gives

for the x7 = 3 layer

14 3« 14 3a 14+ 3a 14+ 3a
! —3) < . _ . _ ) _ . _
7! Ps(z7 = 3) <T[(A44 ia 1)(As 1o 1)(As o 1)(A4 10 1)
1+ 3« 14 3a
(As - 1o 1)(Ag - 1o 1) — 1] := Bo,
forthe x7 = 2 layer
2+ 2a 2+ 2« 2+ 2« 2+ 2«
! —9) < . _ . _ ) _ . _
7! Ps(z7 = 2) <T[(A44 ia 1)(As 1o 1)(As 1o 1)(A4 10 1)
24 2a 2+ 2«
(As - 1o 1)(Ag - 1o 1) — 64] := Bs,
and for the x7; = 1 layer
3+« 3+« 3+« 3+«
[ — 1)< . _ . _ ) _ . _
7 Ps(z7 = 1) <T[(A44 1o 1)(As o 1)(As ia 1)(A4 10 1)
3+« 3+«
As - — 1) (A4 - —1)—64] =B
(A5 o )(As 5 ) — 64] 4



Similar to previous cases, we take the difference obtained by subtracting the RHS of

the above inequality from the RHS of Theorem and rid the denominator. Let this

difference be As;.

Ay :=20482°(1 — a)[(a1 — 1)(as — 1)(az — 1)(as — 1)(as — 1)(ag — 1)(a; — 1) — 78125—
(B1 + By + B3 + By)].

Here we need to show Asg; is positive. First, we must determine the domain of A,;. Using
the same logic as previous cases, we have

4o

Al 267"42 257‘/43 247/44237"45227"462 1

Now, we can apply the partial differentiation test
86A21

=17115a" — 10605a° + 1575a° + 175a* — 175a° — 1575a%—
DA, 04,0 A0 A0 A0 A, @ @+ Lofbar A Hba S «

1683 4 3365 > 0.
For all o« € (%, ] Thus, the partial derivative of Ay, with respect to Ay, Ay, A3, Ay, As, Ag

503
4
is positive and minimized at Ag = 1 e
— X
85A21 1
= — 40(21665a" = 17675a° + 44450° — 175
0A04,0430A,045 1, __ 4 Ty g i(21665a R ¢

l—«

— 5250° — 17770 — 561a + 2795)] > 0.

, 0 €

4o
The partial is again positive with respect to Ay, As, Az, Ay, Ag for all A5 > 1

(%, é] by symmetry. Hence, the next partial derivative is increasing, and we again take
the minimum value

84A21
DA0A20 50451 ,_y 4 _
’ 1

1
1 ST [8a(10087a” — 8967a° + 24150° + 1050+

—«
381a® — 1101a” — 1619a + 2795] > 0.

For the same reason ‘as above, using symmetry, we can evaluate the minimum value of
the partial derivative with A; =1 for i = 2, 3,4

83A21 ‘
— £ = — 8 (19817a" — 18165a° + 4865a° — 101a*
8A18A28A3 A4=3,A5=2,Ag= 4o —1 + Oz[ (
—
+ 17470° — 1383a* — 6973a + 8385] > 0,
DA 1
Y ‘ o =— [32(147000" — 13713a° + 37440° — 389a*
0A10A, Az=4,As=3,A5=2, Ag—= 1 —l1+a
—
+16360° + 341a® — 8560a + 8385)] > 0,
OA 1
L ‘ 4 = [32a(58380a" — 55201a° + 15364a° —
0A; Ag=5,Az=4,Ay=3,A5=2, Ag= 1 —1+a
—

2321 + 6124a° + 9453a% — 49148« + 41925)] > 0.
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Ag; is symmetric for all A;,7 = 1,2,3,4,5,6. Therefore, As; is increasing over the entire
given domain for a. We only need to evaluate Ay at its minimum. If Ag > 4

Ay =165564024a" — 1638132080 + 1253992a° — 7908560* —
A1=6,A9=5 A3=4, Ay=As=Ag=3

5361840 4 874735202 — 17395560 + 10902600,

4
@ Ag < 3. We set the value

for Ag which minimizes As;. Thus, we have Ay = A3 = ;14 = As = Ag = z for some
z € (1,3], and A; > % We consider
.T _—

over the interval. Now we consider the case where 1 <

1

Ay=-2 Ay=Az=Ay=As=Ag=c :x -5
13888002% + 1590558722 — 790978560)a” + (—5252°—
476002° + 232400x* — 4480002° + 4646402% — 158482432
+ 790937600)a’ + (1752° 4 56002° — 16800x* — 332802°+
2265602 — 368640z)a” + (1752° = 56002° + 500802 —
1971202° 4 28800022)a* 4 (12252° — 138402° + 60720z —
768002°)a® 4 (63325 + 32802° — 98402)a? — 3963z’
33652°] > 0,

Agy [((—10852° + 991202° — 521360x* + 11648002° —

for v € (£, 3] and = € (1,3]. This completes-the subcase.

3.5.5. Case V(e). We know that Ps(z7 = 5) >0, so (21, e, T3, T4, T5, e, v7) = (1,1,1,1,1,1,5)
is a solution to the inequality in Theorem [3.5| If

1 1 1 1 1 1 5

—+—F =4+ —+—<1-—=q,

ai as as ay as ag ar

then a € (0, %] because a; € (5,6]. Let A; = a; - o for i = 1,2,3,4,5,6. Rewriting the
equation by substituting A;, we yield

Thus, by the Yau Number Theoretic Conjecture for n=6, we have
7 Ps(z7 = 5) <6[(A; — 1)(As — 1)(A5 — 1)(Ay — 1)(A5 — 1)(Ag — 1) — (Ag — 1)° + A
<A6 - 1)(A6 - 2)<A6 - 3)(A6 - 4)<A6 - 5)] = Bl,
for the x; = 4 layer
1+ 4« 1+4a 1+ 4a 1+ 4o

T Ps(x7 =4) <T7[(A; - F 1)(Ay - i 1)(As . 1)(Ay B T 1)
(As- 12201y TER )4 TRy (a0
(Ao o 1) (g =) T ) (g )4
1—;;104 —5)] := By,
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for the z7 = 3 layer
2+ 3a 2+ 3a 2+ 3a 24+ 3«

I P, =3) <T7[(A, - —1(A, - —1)(A —1(A -1
7 Py(xr = 3) <7[(Ay T )(Az T )(As T )(Ay T )
24+ 3a 24+ 3a 24 3a 6 2+ 3a
(45 5%} ~ (4 o — )= (A 15%e% — 17+ (4 o )
2+ 3« 24+ 3a 24 3« 2 + 3«
(A ——— = DA ——— = 2)(As - ——— = 3)(As - ——— — (A
2+ 3a
. —5)|:=8B
Sa ) 5
for the x7 = 2 layer
3+ 2« 3+ 2« 3+ 2« 3+ 2«
1P, =2) <7[(A; - —1)(Ay - —1)(A;5- —1)(Ay - —1
7 Py(or = 2) <T[(A - T2 = 1)y S - 1)y S (4, S )
3+ 2« 3+ 2« 3+ 2« 3+ 2«
As - —1)(4 - —1) — (Ag - — 1) +(4
(5 5%0" )(Ag Sa ) (A 5%e" ) 4 (4 5%e )
3+ 2« 3+ 2« 3+ 2« 3+ 2«
(Ag - . —1)(A4s o —2)(A¢ ) — 3)(4s . —4)(Ag
3+ 2«
—5):=8B
S5 ) b
and for the x7 = 1 layer
T Polwr = 1) <T[(A; - 2% )4y - 159y o 2250 g, 20y
O = V" s 2 5 1 Ba Y 50
4+« 4+« 4+« 4+«
As - —1)(Ag - —1)— (Ag - —1)°%4+(A
(550z )(6504 )(65(1 )+<65a)
44+ « 44+ o 4+ « 4+«
Ag - — 1)(Ag - — 2)(Ag - —3) (A - — 4 (A
(As . )(As Eor )(As ™ 3)(As . )(As
44+ «
. — = Bs.
5% 5>] X

Similar to previous cases, we take the difference obtained by subtracting the RHS of

the above inequality from the RHS of Theorem and rid the denominator. Let this
difference be Ags.

AQQ I:[((ll - 1)(&2 S 1)((13 - 1)(@4 - 1)(@5 - 1)(&6 - 1)(@7 - ].) — 78125 — (Bl+
By +.Bs + By + B5)|3125a°(1 — ).

Here we need to show Ags is positive. First, we must determine the domain of As,. Using
the same logic as previous cases, we have

A1 >6,A>5A3 >4, A, >3, A5 > 2, A¢ > 1.
Now, we can apply the partial differentiation test
%Ay
0A10A50A30A,0A50 A4

=28721a" — 15197a% + 2016a° + 1400* — 14003 — 201602 —
3553a + 5654 > 0.

For all a € (0, %] Thus, the partial derivative of Ags with respect to Ay, Ay, As, Ay, As, Ag
is positive and minimized at Ag = 1.
85A22
8A18A20A38A48A5 Ag=1

= — 22540 — 672a° + 266a° + 140a* + 16100 + 220902 —

6953a + 5654 > 0.
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The partial is again positive with respect to Ay, As, Ag, Ay, Ag for all A5 > 1, a € (0, ¢
by symmetry. Hence, the next partial derivative is increasing, and we again take the
minimum value

=(—1+ @)*(10360” + 21000 + 3080a* + 280002 + 955
0410420430 A4145=1,46=1 (=14 ) o+ a” + o’ + a” + 995

+ 5654) > 0.

For the same reason as above, using symmetry, we can evaluate the minimum value of
the partial derivative with A; =1 for i = 2, 3,4

0 Ngy
— = —(=1+@)*(7840" 4 23240° + 36540 + 32090+ 5654) > 0
aAlaAQaAg As=1,A5=1,A6=1 ( +a) ( ot ot at at )> ’
0’As = (=14 a)*(10360> + 3472a° + 5463a + 5654) > 0
0A10A 1 A3=1,A,=1,45=1,A6=1 ’
9Ag 5 2
= (-1 225402 4 T71Tar +5654) > 0.
0A] 143=1,43=1,4,=1,A5=1,A6=1 (=1 +a)( @t @) ) >

. A9y 0Agy 0Ny 0A
Over a € (0, %] By symmetry of Ags in Ay, As, Az, Ay, and As, all 8A222’ 8A232’ 8A242’ 8A252

are positive over the given domain. We then plug in the minimum values for A, As, Az, Ay,
and Aj to get a polynomial in terms of Ag and «, and we want to show that it is positive.

We define

A23 = AQQ .
A1=6,A2=5,A3=4,A4,=3,A5=2

We must show Ags is positive over its domain. To do so, we normally apply the partial
differentiation test

A
aa A? — —189000c(177a’ ~ 830° + 10a* — 100 — 420 — 52) > 0,
6
Y 6 5 4 3 2
AT | 4200(5741a’ — 17950° + 110a* — 5600° — 27700 — 3066 + 2340) > 0,
6 'A6=
0% Ay 6 5 4 3 2
T | —1050(7231a° — 7250° — 1340a* — 8010a® — 8520 + 16044a — 4680) > 0,
6 '46=
0%y 6 5 4 3 2
T | —70000(422a° — 4950° + 52450 + 57300 — 2154002 + 12978 — 2340) > 0,
6 '46=
A
88 A” .\ =44408700" — 14561150° 4 11235200° — 87225750 + 82319500° — 11527002
6 1As=1

— 5698260 + 4070880 > 0.

This confirms that A, is increasing. We evaluate Ayy at its minimum:

An|, =242963480a" — 2432079400 + 31134950° — 55476750 + 17027500+
6=1
53788700 — 8473860c + 4070880 > 0.
This completes the subcase, therefore completing the proof for Case V. O
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3.6. Case VI. In this case, [a7| = 7. Plugging that into the Main Theorem, we obtain
the following theorem.

Theorem 3.6. Let ap > ag > a3 > aq4 > as > ag > ay > 1 be real numbers and let P; be
T T x x T x x
the number of positive integral solutions of il R A i Rl Nl R S If

aq a9 as Q4 as Gg ar
P; >0 and 6 < a; <7, then
7! P7 S (CLl - 1)((12 - 1)(@3 - 1)((1,4 - 1)(@5 - ].)(CLG - 1)(@7 - ].) — 279936.

Proof. Since a; € (6,7], we have six levels to consider: z7; = 1,27y = 2,27 = 3,27 =
4,27 =5, and x7 = 6. There must be solutions on the x7; = 1 level. Hence, we have the
six following subcases:
Subcase VI(a) P6(1'7 = 6) = P6(ZL‘7 = 5) = P6(ZE7 = 4) = PG(ZL'7 = 3) ¥ P6(1’7 =
2) =0,
Subcase VI(b): Ps(z7; =6) = Ps(x7 =5) = Ps(x7 = 4) = Ps(x7 =3) =0, Ps(z7 =
2) >0,
Subcase VI(c): Ps(x7 = 6) = Ps(xr = 5) = Fs(xr = 4) =0, Ps(z7 = 3) >
0, P6($7 = 2) > 0,
Subcase VI(d): PPs(z7; = 6) =¢ (z7 = 5) = 0, Bs(z7 = 4) > 0, Bs(z7 = 3) >
O, P6($7 = 2) > 0,
Subcase VI(e): Ps(z7 = 6) = 0, Ps(z7 = 5) > 0,F(z7y = 4) > 0, Ps(z7; = 3) >
Oa Pﬁ(x'? = 2) > 07
Subcase VI(f): Ps(z7; = 6) > 0, Ps(x7 = 5) > 0, Bs(z7y = 4) > 0, Ps(x7 = 3) >
0, P6(337 = 2) > 0.

3.6.1. Case VI(a). We know that (z1, s, 3, 24, ®s, xe, z7) = (1,1,1,1,1,1,1) is a solution
to the inequality in Theorem If

1 1 1 1 1 1 1

— Y+ <1 — =

aq a9 as ay as Gg ar
Then o € (%, g].Let A; = a;-afor i = 1,2, 3,4, 5, 6. Rewriting the equation by substituting
A;, we yield

Thus, by the Yau Geometric Conjecture for n=6, we have

TP =T P(z7 = 1) < 7[(Ar — 1) (A2 — 1) (A3 — 1)(As — 1) (A5 — 1) (A6 — 1) — pe([As])]-

We know the minimum value for [Ag] is 6, as Ag = ag - o > g - 6.Note that pg(v) is
increasing for.v > 6, so we can plug in [Ag] = 6 to maximize the RHS of the above

inequality. This gives

Similar to previous cases, we take the difference obtained by subtracting the RHS of
the above inequality from the RHS of Theorem and rid the denominator. Let this
difference be Ags

Ags := [(a1 — 1)(az — 1)(az — 1)(as — 1)(as — 1)(ag — 1)(ar — 1) — 279936 — B;]a’(1 — a).

Here we need to show Ass is positive. First, we must determine the domain of Ay3. Using
the same logic as previous cases, we have
a

A1267A22A32A42A52A621
—«
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Now, we can apply the partial differentiation test

86A23
=7a° -7 +1>0
DM OO 0A, ¢ T T
for all o € (%, g] Thus, the partial derivative of Ags with respect to Ay, As, Az, Ay, As, Ag
Q

is positive and minimized at Ag = :

—«
85A23

0410420430 4105 Lao=— a

—

1
- [—14a” 4 21a® — 7a® — o?] > 0.
—1+a

a
The partial is again positive with respect to Ay, As, Az, Ay, Ag for all A5 > 1

, &L €

(%, g] by symmetry. Hence, the next partial derivative is increasing, and we again take
the minimum value

0A10A20A30A,

1 I 7 6 5 4
o = a2’ - 56 + 3500 S et o] > 0,

As=Ag=
l—«

For the same reason as above, using symmetry, we can evaluate the minimum value of
the partial derivative with A; =1 for i = 2, 3,4

83A23 1

T 7B =— ——[(56a" — 140a> + 126a* — 48a: + 7)a’] > 0,
8A18A2(9A3 A4:A5:A6:1 Q (_1 —|—oz)3[( (07 (07 (0] «Q )a ]
— o
02A23 1 5 4 3 2
= |(112a” — 336" + 393 — 224a” + 63
0A10A, A3=A4=A5:A6:1 (_1 + 04)4 [( i “ ) “ )
-«
—7)a’] >0,
8A23 1 6 5 4 3
=— —— (224 — 783 + 1120a™ — 840a°+
8141 A2:A3:A4:A5:A6:1 o (__1 —f—Oé)S[( (67 (07 « o
— o

350a% — T7a + 7)a°] > 0.

Ags is symmetric for all'4;,7 = 1,2, 3,4,5,6. Therefore, Ass is increasing over the entire
given domain for . We only need to evaluate Ass at its minimum. If Ag > 7
Ags =502194a° — 5022350° + 7350 — 68600 + 360150 — 100842
Ay=Ag=Ag=Ag=As=As=T
+ 117649 > 0,

(07

over the interval. Now we consider the case where 5 < Ag < 7. We set the value
-«

for Ag which minimizes As3. Thus, we have Ay = A3 = Ay = A5 = Ag = x for some
xz € (5,7, and A; > L5 We consider
l‘ p—
1

- =——[((352° — 1752 + 350" — 3502% + 175777z~
Al:ﬁ’A2:A3:A4:A5:A6:x € — 5

878045)a’ + (—35z° + 1752 — 3502 + 3452 — 1757522+
878040)a’ + (10z” — 452°)a* + (~10z* + 402%)a® + (52°
— 152%)a® — az® + 1) > 0,

for a € (2, %] and x € (5,7]. This completes the subcase.
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3.6.2. Case VI(b). We know that Ps(z7 = 2) > 0, so
(-1'17 L2, X3, X4, s, x67$7) = (17 17 17 17 17 17 2)

is a solution to the inequality in Theorem [3.6] If
1 1 1 1 1 1 2
— b=t —+—+—+—<1- =g,
aj a9 as Qy as Qg a7
then a € (%, %] because a; € (6,7]. Let A; = a; -« for i = 1,2,3,4,5,6. Rewriting the
equation by substituting A;, we yield
1+1+1+1+1+1<1
Al AQ A3 A4 AS AG -
Thus, by the Yau Number Theoretic Conjecture for n=6, we have

T Po(wg = 2) <T[(A1 — 1)(A2 — 1)(As — 1)(As — 1)(As5 — 1)(As — 1) = (4e = 1)° + Ag
(AG - 1)(146 - 2)(A6 - 3)(146 - 4)(A6 - 5)] = Bl,

and for the 7 = 1 layer

T Pyfar = 2) <T[(A - (A L0 (g BT 4, 1 EY )
(A S0 = (A o = 1) <A S 1)+ (g )
(Ao~ T2 1) (Ag - 112 ca)dy 1Y 3)(Ag- TEY —a)(4g
1
: ;;O‘ —5)] := Bs.

Since 7! Py = 7! (Ps(x7 = 1)+ Ps(x7)'=2), so we can subtract the RHS of Theorem [3.6] by
the sum of the RHS of the above equalities to get Ayy, and we can rid the denominator
without changing the sign. Then, we merely need to apply the partial differentiation test
to A24

Aygy := 64a°(1—a)[(ar=1)(as—1)(az—1)(as—1)(as—1)(ag—1)(a;—1)—279936— (B, + By)].

We are trying to show that it is positive for

2
A1267A2257A32A42A52A6>1 —
—«

Now, we can apply the partial differentiation test

86A24 7

= 455" — 413a° + 63a” + 350" — 350° — 63a* 4+ 29a + 57 > 0.
DA, 04,040 A,0 A0, a a” + 03a” + 3o a o + Z29a + >
For all o € (%, g] Thus, the partial derivative of Ayy with respect to Ay, As, Az, Ay, As, Ag
. .. . 2a
is positive and minimized at Ag = 1 .

-«
A 1
2 20 =— [4a (34307 — 420a° + 147a° — 350° -

-1+«

041040 A50A,0451, _

11—«
1202 + 25a + 16)] > 0,
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2x

The partial is again positive with respect to Ay, As, Az, Ay, Ag for all A5 > 1 , €

(%, %) by symmetry. Hence, the next partial derivative is increasing, and we again take
the minimum value:

' Aoy 1 [
DA 0A0A50A, 1, _, _ 2% T (“1+a)?

11—«

16a%(259a" — 399a° + 210a° — 420 —

170 + 502 + 120+ 4)] > 0,

over the domain of «. For the same reason as above, using symmetry, we can evaluate
the minimum value of the partial derivative with A; = 1 for ¢ = 2, 3, 4:

83A24 ’ 3 7
e = [64a*(196a7 — 3640’ + 2520° - 83a’+
0A10A0A5 | 4y, 20 (—1+ a)3[ (
—
40° + 60 +4a +1)] > 0,
82A24 ) 1 4 7 6
= [640*(595a7 — 12950a%4+-11070° — 4850+
0A,0A, A3=A4=A5=A6=12a (—1+ a)4[ (
—

1010® + 3a® + 5a + 1)}> 0,

0A,

1 5 7 6 5
2% =— m[&la (1813a — 4535’ 4 4619a° —

Ap=Az=Ay=As=Ag=
l1—«

25050t 4 7550° — 970 + 13+ 1)] > 0,

00gy 0Ny
DAy " 0A3’

are positive over the given domain. We then plug in the minimum values for

over the interval o € (%, %] By symmetry of Agy in Ay, As, Az, Ay, and As, all

009y 0Ny
DAy~ 0As

Ay, Ay, Az, Ay, and As to get a polynomial in terms of Ag and «, and we want to show
that it is positive. We define

Ags 1= Agy

A1=6,A2=5,A3=4, Ay=3,A5=2

We must show that Ags is positive for all a € (%, %] and Ag > 1. Now we apply the

partial differentiation test. We note that for certain values of Ag > 1, not all derivatives
are positive. We first set Ag > 5.5

PA
2 — —15120a(33a® — 28a° + 5a* — 50 — da — 1) > 0,
DA
34A25 — _1.94.10%/7 6.6 5 4 3
- =—1.94-10%" 4 1.72 - 10%° — 321720.00° — 94080.0a" + 274680.0c°+
0Ag 146=5.5
285600.00* + 83160.0a > 0,
PA
— = —0.00019 — 3.77 - 10°a” + 3.45 - 10°%a° — 626009.990” — 379680.0a" +
0A7 lae=55

436170.0a” + 656040.0a 4 228690.0cr > 0,
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82A25

= — 0.000096 — 4.86 - 10°a” + 4.59 - 10%a% — 731381.0a° — 723296.00* +

DAZ ae=55
340725.0a + 965580.0a + 419265.0a > 0,
oA
5 A25 ) —41040.0 — 4.65 - 10%a7 + 4.48 - 10a° — 563278.90° — 845028.0a* 4 46156.90°
6 6=5.5

+ 968745.502 + 545169.4c > 0,

over the set domain. Therefore, Ass is increasing. We confirm that it is positive by
evaluating it at its minimum

Ao =225720.00 + 1.45 - 107a” — 1.46 - 107a® — 295086.60° — 687031.0a* — 82290.90°

Ag=5.5

+ 594278.702 + 425878.3c > 0.

As for when Ag € (4,5.5], we can verify numerically through Maple or Mathematica to
confirm that it indeed is positive. Thus, this subcase is complete. This completes the
subcase.

3.6.3. Case VI(c). We know that Ps(z7 = 3) > 0, so
(xla T2,T3,T4,Ts, xf)'?x'?) = (17 17 17 ]-a ]-) 17 3)

is a solution to the inequality in Theorem [3.6] If

1 1 1 1 1 1 3
et~ — ST D=,
aq a9 as Q4 as Qg a7

then o € (%, ‘—71] because a; € (6,7]. Let Let A; =a; -« for i = 1,2,3,4,5,6. Rewriting the

equation by substituting A;, we yield
RO T N S N U
A Ay Ay Ay As 0 Ag T
Thus, by the Yau Number Theoretic Conjecture for n=6, we have
7! Ps(x7 = 3) <7[(A; — 1)(Ay — 1)(As — 1)(Ay — 1)(A5 — 1)(As — 1) — (Ag — 1)° + Ag
(As — 1)(As — 2)(As — 3)(As — 4)(As — 5)] := B,

for the x7; = 2 layer

71 Py(r = 2) <T[(A} - - gjo‘ C 1) (4 25“1)(143 = gja — A, ;jo‘ _1)
(Ag - 12:0[2@ C1)(As - 1;—@204 —9)(Aq 1—;)—a2a ~3)(As 1—:|))—ja —4)(Ag
14 2a
. —Z;_a —9)= B,
and for the x7 = 1 layer
70 Py(ary = 1) <T[(A; - 2;‘3‘ C1)(A, - 2;0‘ C1)(As - 2;0‘ —1)(A, - 2;0‘ _1)
(A 20 (A TS 1) = (A TS ) (4 T
(A 2 = 1A % = 2) (A S0 =) 2 — a4,
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24«
3a

Similar to previous cases, we take the difference obtained by subtracting the RHS of the
above inequality from the RHS of Theorem and eliminate the denominator. Let this
difference be Aqgg

Agg :=729a°(1 — a)[(ay — 1)(az — 1)(as — 1)(ay — 1)(as — 1)(ag — 1)(az — 1) — 279936—
(By + By + Bj)].

Here we need to show Agg is positive. In order to apply the partial differentiation test to
Asg, we must first determine its domain

—5)] .= Bs.

a > 3.

A1 >6,A3>5,A3 >4, A4 > A5 > Ag > 1
—a

Now, we can apply the partial differentiation test

86A26
= 5558a" —4130a°+672a° +140a* —1400° — 67207 —244a+10030.
0,050 A0 A0 A0 A, “ e e &
For all @ € (1, 3] Thus, the partial derivative of Ay with respect to Ay, As, As, Ay, A5, Ag
is positive and minimized at Ag = 3.
85A26

=10878a" — 848408 + 1386a° + 420a* + 2100 — 1548a°%—
DA, 043050045 | aes o @ 4 1386@ Ty R2lo + 210 @

a + 3009 > 0.

2x

The partial is again positive with respect to Ay, As, Az, Ay, Ag for all A5 > 1 , €

(%, ‘—71) by symmetry. Hence, the next partial derivative is increasing, and we again take
the minimum value:

84A26

=21420a" = 17388a° + 2772a° + 756a* + 1800 — 28530 —
DA,0A,0 4504, « o+ o+ o+ Q o

As=Ae=3

6786c + 9027 > 0.

Over the domain of a. For the same reason as above, using symmetry, we can evaluate
the minimum value of the partial derivative with A; = 1 for ¢ = 2, 3, 4:

83A26 7
S — =42336a" — 35532a° + 5670a° + 216a* + 699303 — 202502 —
DALO AR As | Ayt hg—s @ @ obrbar + 210at + baoa @
27243 + 27081 > 0,
0% Nog 7 6 5 4 3
=126252a" — 108108a° + 183060° — 5373a* + 27729a°+
OAT0A | Ag=4,A,=A5=As=3
1498502 — 129627 4+ 108324 > 0,
aA26 7 6 5 4 3
=503118a" — 437508a° + 82539a° — 51570a* + 1247940°+
O0A | |Ay=5A3=4,A1=A5=As=3

1777140” — 7307550 + 541620 > 0,
9Ass 0Asg
0A; " 0As’

are positive over the given domain. We then plug in the minimum values for

over the interval o € (%, %] By symmetry of Agg in Ay, Ay, Az, Ay, and As, all

AVTRRAYY;
DAy~ 0A;
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Aq, Ay, Az, Ay, and As to get a polynomial in terms of Ag and «, and we want to show
that it is positive. We define

Ag7 := Agg .
Ay =6,Ay=5,Ag=4,A,=3 A5=3
We must show that A, is positive for all @ € (4, 4] and Ag > 1. Now we apply the

partial differentiation test. We note that for certain values of Ag > 1, not all derivatives
are positive. We first set Ag > 4,

PA
—8A527 = —6259680a" + 42184800° — 680400a” + 6804000 + 12927600 + 7484400 >0,
6
0* Aoy 5 4 3 2
T |, = —15120a(9700” + 260a" + 384a” + 4400 + 421 + 198) (=1 +-) > 0,
6 6=
D No7 5 4 3 2
T |, ~1890a(89720° + 1894’ +29820” + 36670”44832+ 3168) (=1 + ) > 0,
6 6=
0*No7 5 4 3 2
S |, — —378(348020° 60640 +96750° +03400” +195200r+21120) (—1+0a) > 0,
6 6=
OA
&427 T 6534738a" + 54465660° — 980541a° + 17701830 — 1709901a” — 52094790
6 lAe=4

+ 6659550 +- 1083240 > 0,

over the set domain. Therefore, Ay; is increasing. We confirm that it is positive by
evaluating it at its minimum

Aoy =2040269490" — 203972616a° = 817407a° + 10324350* + 30524130 —

Ag=4

63453420° + 2652480 + 4332960 > 0.

As for when Ag € (3,4], we can verify numerically through Maple or Mathematica to
confirm that it indeed is positive. Thus, this subcase is complete. This completes the
subcase.

3.6.4. Case VI(d). We know that Ps(x7 =4) > 0, so
(xla Lo, T3,T4,Ts5,Tp, .1’7) = (]-7 17 17 1a ]-7 17 4)
is a solution to the inequality in Theorem [3.6] If
1 1 1 1 1 1 4
+ :
aj a9 as Qy as Qg a7
then o € (%, %] because a; € (6,7]. Let A; = a; -« for i = 1,2,3,4,5,6. Rewriting the
equation by substituting A;, we yield
1+1+1+1+1+1<1
A Ay Ay Ay A Ag
Thus, by the Yau Number Theoretic Conjecture for n=6, we have
(AG — 1)(A6 — 2)<A6 — 3)(146 — 4)<A6 — 5)] = Bh
for the x7 = 3 layer
14+ 3a 14+ 3a 14 3«a
_ 1)(A2 . . 1
«

4o 4o




(As - 11—&304_1)(146' 11—;@_1)_(146_ 11—0[304_ )6 (Ag - 11—(;%!)
(Ao 2% = 1) (g 0 = 9) (g T )4 Y (4
1
for the z7; = 2 layer
T Py =2) <T(Ar- 2022 1)y 2E22 (. 202 gy, 202
(A5_21—Oé20z S 1) (A - 21—(30& S 1) = (A 21—@204 B )6 (Ag - 21—@205
(Ag - 21—0[204 C1)(Aq 21—a2a ) (A - 21—@204 —3)( A - 21@204 = 1) (A
24+ 2«
St = 5)) = B
and for the x7 = 1 layer
7V Pyl = 1) <T[(A; - 3;0‘ 1) (A, 3420‘ 1A 3;0‘ 1A, - 3;0‘ _1)
(s o0 = 1) S0 ) — (e 2 1 (4 200
(- 252 1y 252 iy PR gy 2Ry
: 3;;0‘ —5)] := B..

Similar to previous cases, we take the difference obtained by subtracting the RHS of the
above inequality from the RHS of Theorem and eliminate the denominator. Let this
difference be Agg

Agg :=[(a1 — 1)(ag — 1)(az — 1)(ay — 1)(as — 1)(ag — 1)(ay — 1) — 279936 — (B; + Ba+
Bs + By)]20480°(1 = a).

Here we need to show Asg is positive. First, we must determine the domain of Ayg. Using
the same logic as previous cases, we have

> 2.

4
A1> 6,45 25,45 > 4, A > 3, A5 > Ag > a
—

Now, we can apply the partial differentiation test
36A28

=17115a" — 10605a° + 1575a° + 175a* — 175a° — 1575a%—
DA,0A,0A50A,0A50A, « @+ Lofban A Hba « «

1683 + 3365 > 0,

for all a € (%, %] Thus, the partial derivative of Asg with respect to Ay, Ag, Az, Ay, As, Ag
is positive and minimized at Ag = 2.

85A28
0A1 8142 8143 8A46A5 Ag=2

=16030a" — 11130a° + 1750a° + 350a* + 10500 — 94202 —

5646c + 6730 > 0.
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The partial is again positive with respect to Ay, As, As, Ay, Ag for all A5 > 2, a € (3, 2]

by symmetry. Hence, the next partial derivative is increasing, and we again take the

minimum value
0* Aoy

0A10A50A30A,

=15484a" — 1162008 + 18200° — 420a* + 21320 + 3188 —
As=2,A6=2

15852a + 13460 > 0.

For the same reason as above, using symmetry, we can evaluate the minimum value of
the partial derivative with A; =1 for i = 2, 3,4,

83A28
— = =305480a" — 2366005 + 43400° — 24120 + 284403 + 210200*—
814181426143 A4=3,A5=2,A6=2 @ @ + @ @ + @ + @
566760 + 40380 > 0,
32A28 7 6 5 4 3
=91056a" — 72240a° + 15152a° — 106726 — 26720+
0A10Ay | A3=4,A4=3,A5=2,A6=2
1210720 — 254064c + 161520 > 0,
8A28 7 6 5 4 3
=362544a" — 29291200 + 724320° — 62448a* — 720480+
OA | | Ay=5A3=4,A4=3,A5=2,Ag=2

7612000 — 1379760 + 807600 > 0,

0Ags OAgs OAgg OAgg

over a € (£, 2]. By symmetry of Aogg in Ay, Ay, As, Ay, and Aj, all
(377] yy y 28 1 2 37 47 57 aA27aA37aA478A5
are positive over the given domain. We then plug in the minimum values for Ay, As, Az, Ay,
and As to get a polynomial in terms of Ag and o, and we want to show that it is positive.

We define

Agg 1= Ajg .
A1=6,A5=5,A3=4,A4=3,A5=2
We must show Agg is positive over its . domain. To do so, we normally apply the partial

differentiation test

PA
5 Ajg = —19656000a +108864000° —15120000°+15120000° +45964800° +4173120c > 0,
6

*A
8Aj9 = —134400/(4470° 4 170" 4+ 1020° + 24202 + 6190 + 621)(—1 + a) > 0,
6 A6:2
0% An 5 4 3 2
. = —13440a(19a” — 41a* — 960* — 308a* — 67a + 621)(—1 + ) > 0,
0*Agy 5 4 3 2
; = —1792(4350° + 475a* + 10540° — 600a® — 3765 + 3105)(—1 + a) > 0,
0AG 1 As=2
oA
S A29 ) =1809360a" — 1085648a° — 1346480a° — 2415184a™* + 100853600 — 76771680 —
6 | As=2

810000« + 2422800 > 0.

This confirms that Asg is increasing. We evaluate Agg at its minimum:

Ao =574961632a" — 5738328000 + 6788160° — 59359040 + 7521568 + 457056

Ag=2
— 7712928 + 4845600 > 0,

for a € (%, %] This completes the subcase.
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3.6.5. Case VI(e). We know that Ps(z7 = 5) > 0, so
(3317 X2, X3,T4,T5, L, .23'7) = (17 17 17 17 17 17 5)
is a solution to the inequality in Theorem [3.6] If
1 1 1 1 1 1 )
—t—t—+—+—+—<1-— =g,
@ a2 a3 a4 A5 Qg ar

then a € (%, %] because a; € (6,7]. Let A; = a; - for i = 1,2,3,4,5,6. Rewriting the
equation by substituting A;, we yield
1 1 1 1 1 1
A—1+A—2+A—3+A—4+A—5+A—6§1.
Thus, by the Yau Number Theoretic Conjecture for n = 6, we have
71 Py(ivr = 5) <6[(Ar — 1)(Az — 1)(As — 1)(As — 1)(As — 1)(Ag — 1) — (A= 1)7+ Aqg
(Ag — 1)(Ag — 2)(As — 3)(Ag — 4)(Ag — b)] := By.
For the x7 = 4 layer
1+ 4« 1+4a 1+ 4 1+4a

T Ps(z7 = 4) <T[(A; - Fa 1)(Az - ro 1)(As - B ) 1) (A4 P 1)
(As- 2% g TRy g R ey (4, 1T
(Ao~ 1220 1) (g TE oy TR gy, TE gy,
1+4a _5) = By,
for the x7 = 3 1ayer5a
71 Py(w7 = 3) §7[(A1’2+a3g_1)(A2 2—gja—1)(fl3'2—ga3a—1)(z44 2—52‘304_1)
(45 2230 g 20y 2Ry g 23
(A6_245—a3a_1)(A6 2—;—504_2)(146'2—;—@304_3)(%16 2;—;&_4)(/46
2 +3a = 5) = B,
for the x7; =2 layer5a
7! Ps(z7 = 2) <T[(A; - 3;a2a —1)(Ay - 3—;&2(1 —1)(As - 3;{3“ — 1)(Ay - 3;;“ —1)
(A 120 (a2 gy (4, B2 (g, 22
(Ao 2020 1) 2220 gy 2R gy, 2Ty,
320 p
and for the z» =1 12;@
7! Ps(z7 = 1) <T[(A; - 4;&0‘ ~1)(A, 4;;a 1) 4;04 1A, 45+aa .
B e R



44+ « 4+« 4+« 4+«
(Ag - = —1)(Ag - o —2)(Ag - o —3)(Ag -

4+ «
. — = B-.
da 5)] >

Similar to previous cases, we take the difference obtained by subtracting the RHS of
the above inequality from the RHS of Theorem and rid the denominator. Let this
difference be Agg. Note the relation between Aszg and Agy, Azg = Agy—630659375a5(1—)
Asg and Ay also have the same domain for A;, Ay, Az, Ay, A5 and Ag

5%0"

> 1.

Al ZGaAQ 257*43 247A4Z37A5227A62 1
—

Since we already applied the partial differentiation test for Ags, we know that the partial
derivatives for Az are also all positive. Thus, we only need to test Asy at its minimum.

As = 8736228550 — 8738704400° + 3179120a” — 60945500+
A1=6,A0=5,A3=4,44=3,A5=2,A¢=1

39996250 + 303870 — 2961360 + 1820880,

12
6°7

3.6.6. Case VI(f). We know that Pys(x7 = 6) > 0, so
($1, L2, X3, L4, 5, L6, $7) = (17 111,11, 6)
is a solution to the inequality in Theorem [3.6] If

over the domain of a € (%, £]. This completes the subcase.

then o € (0, 2] because a7 € (6,7]. Let 4; = a; - a for i = 1,2,3,4,5,6. Rewriting the
equation by substituting A;, we yield
i+i+i+i+i+i<1
Ay Ay Az Ay As 0 Ag T
Thus, by the Yau Number Theoretic Conjecture for n=6, we have
7! Ps(z7 = 6) <6[(A; — 1)(As— 1)(A5 — 1)(Ay — 1) (A5 — 1)(Ag — 1) — (Ag — 1)° + A
(As — 1)(As — 2)(As — 3)(As — 4)(As — 5)] := By,

for the x7 = 5 layer

T Py(wr = 5) <T[(Ar- 2% _1y(4, - 1;;“ 1Ay gof’o‘ S )(Ay - 2 gja ~1)(As
‘ 1%6—()[504 C1)(Ag 125_;&_1)_(/16‘ 1—(13—@50(_1)6+(A6 1—é—a5a)
(A T — 1)y 2 = 2)(Ag e ) (g i — 4)(As
1 o
—(;5 —5)] := By,
for the x7 = 4 layer
71 Py(y = 4) <T[(A; - 230 _ 1y(4, 224‘)‘ 1)(4s - 2 gjo‘ S 14,2 gjo‘ —1)(As
2—(!5—&404 C1)(Aq nga_ )= (Ag 2—(15—&404_1>6+(A6 Q—é—;a)
(A e = 1) (g T =)Ao = 3) (g T — (A



2+ 4o

e — 9= By,
for the z7 = 3 layer
71 Pafarr = 3) <T[(AL - e 1)y 0Ty 20Ty, 2RIy
) ) - (A S 1) (g
(Ag 3ga3a—1)(A6'3ga3a—2)(A6'320?&—3)(146'3?;&3@—4)(%16
3%6—a3a _ 5>] — B,
for the z7 = 2 layer,
T Py =2) < Tl(Ay- e 22 1)y TERE gy TERE gy, SRy,
T R T (e
(Ag 4—(|S—a2a_ )(A6‘4—(|3—&2a_ )(A6'4ga2a— )(A6'4—gj&_4)(A6
4+ 2
S
and for the x7 = 1 layer
TPy = 1) <T[(A - 2 )y 20 Sy PSPy,
S g S L (g 2R 1P (4 2
(A 22— 1)(4g 22 — gy 2EE gy 22 g4,
o
) B

Similar to previous cases, we take the difference obtained by subtracting the RHS of
the above inequality from the RHS of Theorem and rid the denominator. Let this
difference be As;.

Agy :=[(a; — 1)(as=1)(az — 1)(as — 1)(a5 — 1)(ag — 1)(a7 — 1) — 279936 — (B; + Bz + Bs

+ Bj + Bs + B)]466560°(1 — ).
Here we need to show Ag; is positive. First, we must determine the domain of As;. Using
the same logic as previous cases, we have

A1 >6,Ay>5 A3>4,A, >3, A5 > 2, Ag > 1.
Now, we can apply the partial differentiation test
9%As;

0A10A20A30A4,0A50A¢

=470197a" — 216727a° + 257250° + 12250* — 122502 — 2572502

— 63209 + 89675 > 0.
For all a € (0, %] Thus, the partial derivative of Az, with respect to Ay, Ao, As, Ay, As, Ag
is positive and minimized at Ag = 1.
85A31
8A18A28A36A46A5 Ag=1

— — 4224507 — 857508 + 3675a° + 1225a* + 2082503
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+ 4605902 — 110639 + 89675 > 0.

The partial is again positive with respect to A;, As, A3, Ay, Ag for all A5 > 1, a € (0, %]
by symmetry. Hence, the next partial derivative is increasing, and we again take the
minimum value

84A31

=(—1+ @)*(186130" + 374710’ 40’ 202 + 21281
DA 0A,0A0A, (—1 + a)?(18613a” + 374710 + 55594a° + 573020 + 21281a+

As=1,A¢=1

89675) > 0.

For the same reason as above, using symmetry, we can evaluate the minimum value ‘of
the partial derivative with A; =1 for ¢ = 2, 3,4,

IPA
DA DA DA A‘”’g YR —(—140)*(140210*+41818a°+70896 0 +635260-89675) > 0,
1 2 3 144=1,A5=1,46=1
82A31 4 3 N
DA DA | asmt Arct st pger — (LT @) (1861307 + 65877a” + 105771g % 89675) > 0,
3=1,A4=1,A5=1,A6=
DA, | Ayt At Ayt At At —(—1+ )°(422450° + 1480160 + 89675) > 0,
2=1,A3=1,A4=1,A5=1,A=

0031 0A3z 0A3 0Az
0Ay " 0As " 0A, " 0As
are positive over the given domain. We then plug in the minimum values for Ay, A, A3, Ay,

and Aj to get a polynomial in terms of Ag and «, and we want to show that it is positive.
We define

over a € (0, %] By symmetry of Asy in Ay, A, A3, Ay, and As, all

A32 = A31 .
A1=6,A2=5,A3=4,A,=3,A5=2

We must show Ag; is positive over its domain. To do so, we normally apply the partial
differentiation test

PA
5 Agl = — 553437360a" 4 224804160a° — 23814000c” + 23814000 + 1279152000+
6
200718000c > 0,
34A31 5 4 3 2
ST |, = 151200(2709707+198170"42020207+182420°+5677a—13275)(~1+a) > 0,
6 'As=1
®Agy 5 4 3 2
T |~ —7960a(17689a°+161210"+13776a" ~44440”~330800+13275) (—1+a) > 0,
6 6=
0?Agy 5 4 3 2
Tz |, 2, = ~15120(21070°~16450"+378000"+1078400"~1008350+-22125)(~1+a) > 0,
6 6=
aA31 7 6 5 4 3
TA |, 7279435807 — 190812240° + 310639500 — 1805133600" + 166542930a"—
6 'Ade=1

151161840 — 86664150cr + 64566000 > 0.

This confirms that Ag; is increasing. We evaluate Ay at its minimum:

Agy =13039083414a" — 130456098720 + 637415100 — 111101760a* 4 467307540+

As=1

700943040% — 127504350a + 64566000 > 0,

for a € (0, %] This completes the subcase, therefore completing the proof for Case VI. [J
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3.7. Case VII. In this case, a; > 7, and we are trying to prove:

Theorem 3.7. Let a1 > as > a3 > a4 > as % ae % a; >:v7 bexreal %umbe%“s an% let P; be
the number of positive integral solutions of D2 BT T, If

aq a9 as Q4 as Gg ar
P;>0and 6 <ay; <7, then
7' P; <(a; — 1)(ag — 1)(az — 1)(ay — 1)(as — 1)(ag — 1)(ar — 1) — (140° — 1540° + 7000" —

15890° + 1743v* — 713v — 1) = B,.
v=a7—F+1

a; ay ay ay ap @
Let the fractional part of a; be 5. Note that it must be one of —7, —7,—7,—7,—7, -
g Az QA4 a3 A9 A1
Equality holds if and only if a1 = a3 = a3 = a4 = a5 = ag = a7 € Z.
Proof. For the proof to this case, we need to use the sharp GLY Conjecture for n = 7.
Although it wasn’t proven, it is modified to fit the conditions to this question, as explained
in the introduction:

Theorem 3.8. Let a1 > as > ag > ay > as > ag > a7 > 7 be real numbers. Then,

7! P7 §a1a2a3a4a5a6a7 — 3(&1@2@3&4@5@6 + a102G3040507 + G1A20304A607 + Q10203050607+

175

a1aoa405060a7 -+ 10304050607 -+ a2a3a4a5a6a7) + _6 (a1a2a3a4a5 -+ a1a2a3a4a6+

102030506 + Q109040506 + 103040506 + a2a3a4a5a6) - 49((11@2@3(14 + aiaqasas+
(1020306 + 1020405 + Q1020406 + Q1020506 + 1030405 + 1030406 + Q1030506+

406
a1G40506 + 2030405 + 2030406 + 2030506+ 2040506 + A304a506) + = (a1a0a3+

ai1a2a4 + ai1aqas + ajaqsag + ajasay + a1asas + arasag + araq4as + a1a4a¢ + arasag+

A2G304 + G20305 + A20306 + Qo405 + Q20406 + A20506 + A3A405 + A3040¢6 + A30506+

H&8
a4a5a6) — - (a1as + a1a3 + ajas + aras + aag + asag + asay + asas + asag + asay

+ azas + asag + asas +aqa6 + CL5CL6> + 120(@1 +as+a3+as+as+ CLG) = Bs.
Equality holds if and onlyif ay = as = a3 = a4y = a5 = ag = ay € Z.
We want to show that the RHS of the inequality in Theorem is greater than that
of Theorem [3.7 Therefore we take their difference and substitute in a; = A; - a7 for

1=1,2,3,4,5,6 and 5 = Z—g without loss of generality.We eliminate the denominator of
the difference, and define it as Az

Agz = (Bg — Bs)Ag

Now, we apply the partial differentiation test over the interval A; > Ay > A3 > Ay >
As > Ag > 1 and a; > T:

0" Ay — 100804’ > 0
OAL0A30A30A,0A50A7 [
811A32
A0 A0 A AsDATIAL | ayr 11520aS — 2028045 > 0,
A — 648048 — 20280a> > 0
A10A20A30A10A50A2 | 46-1 7 [
0Dy — 2400a5 — 1014042 > 0
8A18A28A38A48A58Aé As=1 7 7 ’
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PBA
22 = 660aS — 338042 > 0,

0A10A0A30A,0A50A8 1 4g=1
7

TA0A, aiﬁyi SO pet 1444 — 84543 > 0,
6

945 Azaifai S|, = 2608 — 16903 >
5

8A18A288§§26A48A5 demt az — 1—296@ > 0,
4
8A18i2AajgaA4 Agml Agml 6a? — %a‘? + 48a3 > 0,
%ﬁf@flg Ai=1As=1Ag=1 8a7 - %56157) + 14307 — %a? > 0y
% Ayl Agm1 A1 Ag=1 10a7 - %a? + 284a7 — %a? T ?a% >0,
%%4312 As=1 As=1As=1,As—1 Ag—1 12a7 ~ ?a? +470a7 — 797a; + 58247 — 119a7 > 0.

Thus, all that it remains is for us to test the minimum equality case, where A; = Ay =
A3:A4:A5:A6:12
Asy =0.
A1=Az=Az=A4=As=As=1
This shows the equality case, and thus Az, is non-negative. This case is complete. U

4. CONCLUSION

Thus, we have completed the proof to the Yau Geometric Conjecture, giving a sharp
upper estimate of the geometric genus. The main theorem states that P; > 0 for the
inequality to hold. It has already been proven by Yau and Zuo [36] that the Yau Geomet-
ric Conjecture holds when the geometric genus of the singularity is 0. Thus this paper
completely proves the conjecture in the seventh-dimensional case.

The method that has been applied in this paper provides possible insights to proving
the conjecture in the general n case. While this paper approaches the proof numerically,
is it possible to generalize the results from the partial differentiation test to all n in
an algebraic sense? If so, how can it be adapted and how to we split an n-dimensional
simplex into layers as we did in the paper? If these questions are solved, we might be able
to make certain advancements in proving the general-n case.
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