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ABSTRACT. In this article, we study Pdlya’s orchard visibility prob-
lem in arbitrary dimension d: suppose at every integral point in R¢,
centered a small d-dimensional ball with radius r (which is considered
as a tree at the integral point), given a d-dimensional ball centered
at the origin O with radius R (which is considered as the orchard),
it asks for the smallest r such that every ray starting from O will hit
some tree in the orchard. We give both upper and lower bounds of
the minimal value of r, say p in terms of R, moreover, we prove that

as R — 00, p= O(R™71).

1. INTRODUCTION

Let A be the set of lattice points Z?\O in R?, where O is the origin. Let
B(O, R) be the closed ball in R? centered at O with radius R > 1. Centering
at every integral point P € B(O, R), is a small closed ball B(P,r) with given
small radius » >:0. The original Pdlya’s orchard visibility problem considers
the case d = 2, when the disc B(O, R) is thought as a round orchard and every
B(P,r) a tree at P, it asks for the smallest r, which we denote by p, so that
one standing at the center O cannot see through the orchard, that is, for any
ray [ starting from O, I N B(P,r) # § for some P.

In [1], it proved that

1 1
1.1 —<p< .
(1.1) il PR

Indeed, in an earlier paper [2], Thomas Tracy Allen had proved that

(1.2) P=x

In this paper, we’d like to study the general Pdlya’s orchard problem in arbi-
trary dimension d and prove similar bounds as in (1.1). Our strategy follows
[3], where, however, only deals with the 2 and 3 dimensional cases.
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2. LOWER BOUNDS

Consider in R? the d-dimensional cuboid C' with diagonal vertices O and D :=
(1,1,---,1,[R] + 1), where [R] is the floor function of R. Then
CNzt={(z1, - ,xq) €24 | x; €[0,1),Vi=1,--- ,d — 1;24 € [0,[R] + 1]}.

Apparently, D is not in B(O,R). The segment OD is of the length

V(d—1)+ R? and any P € C NZ% has the distance squared dist(P, OD)?
to OD

(d=1+ (Rl +1)*)(af+-+23) — (1 4+ + za-1 + ([B] + V)za)?
d—1+([R]+1)?

This lead us to our first result, which is a direct generalization to the first

inequality of (1.1).

(2.1)

PROPOSITION 1. notations as above

d—1
Vd—1+([R] +1)2
ProoF: Consider the formula (2.1), apparently that among all integral

points in C other than O and D, Py ={0,--- ,0,1} minimize the expression,
when

(2:2) <p.

d—1
d—1+ ([R]+1)%

dist(Py, OD)? =

(see the figure below)

[R]%1

FIGURE 1

d—1

d=1+([R]+1)%’
g

So if the tree radius r can block the orchard, it must bigger than

This completes the proof.

The proposition tells us that p grows faster than the rate of R~! as R goes to
infinity, however, it is not the exact rate of growth of p, so we want a better
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lower bound of p in terms of R. Indeed, the proof of the proposition tells
us that, to obtain such a lower bound, we have to consider a “finer” solid
containing the ray than the coboid C above. To use such a solid in higher
dimension, we have to use the volume formula of a lattice polyhedron in higher
dimension developed by Macdonald in [4], which is the generalization of Pick’s
Theorem used in [3, Theorem 2.2]. Now we summarize below.

Let Z% C R? be the standard integral lattice, X a d-dimensional polyhedra in
R? whose vertices are all in Z?. Let X be the boundary of X, which can be
viewed as a d — 1- simplicial complex. For any integer n > 0, write

1

L(n, X) = |X n =24,

n

and )
M(n,X)=L(n,X) — iL(n,ﬁX),

then, we have the volume of X can be computed by:

PROPOSITION 2 (Macdonald’s Theorem). The volume of the polyhedra Vol(X)
equals

=z {M(d—-1,X) - (dl 1>M(d~ 2,X) + <d2 1>M(d3,X)
- DT, ),
where M(0,X) =1 if d is eveny M(0,X) =0 if d is odd.
Now we give us first theorem

THEOREM 1. There is a constant ¢ > 0 such that
(2.3) ([R] + 1)p? ! > c.

Remark 1. The constant c is given by the volume of a polyhedra, which can be
computed using Macdonald’s Theorem above. The key is to construct a proper
polyhedra, which will be clear in the proof of the theorem.

LEMMA 1. Point Q € ZNB(0, R), if for any P € ZNB(O, R), OBNB(P,r) =
B, then the coordinates of Q are coprime, that is, if Q@ = (a1, - ,aq) then
ged(ay, -+ ,aq) = 1.

The lemma comes from an easy observation. Suppose gcd(aq,- -+ ,aq4) = d

ag) =a >
1, then Py = %(ay, -+ ,aq) € Z°NB(0, R) and obviously OBNB(Py,r) # 0. O

LEMMA 2. Let | be any ray starting from O, if point P € Z°N B(O, R), P ¢
such that dist(P,1) is minimal, then the coordinates of P are coprime.
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Suppose the coordinates of P are coprime with greatest common divisor
d > 1, then dist(5P,1) < dist(P,1). Contradiction. O

To carry out our argument in high dimension, we have to generalize the result
to Lemma 2 from a ray [ to a family of geometric objects which we called
diamonds with a diagonal, and is defined as follow:

DEFINITION 1. In RY, for any positive integer n < d, a n-dimensional diamond
® with a diagonal I is defined as follow:

(1) A 1-dimensional diamond ® is nothing but a segment start from the
origin O to a point P # O in R? and its diagonal I is itself;

(i) Suppose for any ¢ < n, the i-dimensional diamonds with a diagonal
are well-defined, then a n-dimensional diamond ®,, with a‘diagonal I,
is defined base on some n-dimensional diamond ®,._; with a diagonal
I,—1: let V,,_1 be the n — 1 vector space generated by vectors in ©,,_1,
and P, a point in Rd\Vn_l, consider OI,,_1 and-OP, as two vectors,
then define Q,, be the end point of the vector OI,,_1 — OP,, and ©,,

is defined to be the convex hull of ©,,_1 U{P,,Q,}, its diagonal is
In =Adp_1.

FIGURE 2. an example of 1,2 and 3-diamonds

LEMMA 3. Let ® be a n-dimensional diamond with a diagonal I in R, n < d,
V' be n-dimensional subspace in R% generated by ©. Now if a point P € Z% N
B(O,R), P ¢V such that dist(P,®) is minimal, then the coordinates of P are

coprime.

Suppose A € D is the point such that dist(P,D) = dist(P, A) = a. Consider
the triangle AOAP, since © is a convex hull by the definition, the segment
OA C ®. Now if the greatest common divisor of the coordinates of P ism > 1,



ORCHARD VISIBILITY PROBLEM 5

consider the point Q = %P € OP. Find a point Q' € OA C ® such that
QQ' || AP, then apparently that dist(Q,D) < dist(P,D). Contradiction! O

PROOF OF THE THEOREM: Consider the point D; := D given above, we
view the segment OD as a vector from the origin O to D and denote it by l.
Among all integral points in B(O, R), find P in the first quadrant (that is,
all the points are of nonnegative coordinates) be the one of minimal distance
to . Write the minimal distance €1. From the lemmas above, we .know the
coordinates of P, are coprime. View the segment OP, as a vector and denote
it by ¢, and define vector u; := I U1, define the two dimensional diamond Dy
be the parallelogram spanned by v and #;. From the two lemmas above, Dy
does not contain any integral points of A other than the 4 vertices. Denote the
2-dimensional plane spanned by ¢} and #; by V5. Using our notion of diamond,
Dy is a 2-dimensional diamond with a diagonal [.

Now among all integral points in B(O, R)\Va, find one P; in the first quad-
rant of the minimal distance to Vo N B(O, R). Write the minimal distance €.
Consider the 2-dimensional diamond Ds with diagonal [ and the point Ps, by
Definition 1, they together define a 3-dimensional diamond D3 with diagonal
l. By Lemma 3, all the coordinates of P; are coprime, D3 contains no inte-
gral points other than the 6 vertices. Denote the 3-dimensional vector space
generated by vectors in D3 by V3.

Keep this process, for all integer ¢ = 1,2,--- ,d, we obtain i-dimensional dia-
mond D; with diagonal l_; Vi = spanD;, integral points P; in the first quadrant
such that
(a) dist(P;,Vi_1NV;_1) = g;—1 is minimal among all integral points in
B(Ov R)\Vi—l ;
(b) Dj is'the diamond constructed by D;_; and P;;
(¢) ~D; contains no integral points other than its vertices.

It is easy to see, from our construction, the volume of D; is

2i—1
(2:4) Vol(D;) = e ~ei—1([R] + 1).
In particular, Write ® := D — d, its volume is

2d—1
(2.5) Vol(D) = e1--ea—1([R] + 1),

d!
which can also be calculated by Macdonald’s formula as in Proposition 2. On
the other hand, By our construction of @, if the tree radius r is such that every
ray starting from O and passing through one point in ® will be blocked by
some tree, then r > ¢; for any 7. So we have

2d—1

d!

(2.6) 4 Y([R] 4 1) > Vol(D).



Writing
d'Vol(D)
(2.7) = g1
we complete the proof. O

Remark 2. It d = 2, Vol(®) = Vol(Ds) = 1, then the Theorem tells that
([R] + 1)p > 1, which reproduces the result in [3, Proposition 2.4]. If d.= 3,

Vol(®) =Vol(Ds3) = %?% = %, then the theorem tells that
1
(28) (7] + )% > 5,

which is better than the result in [3, Proposition 4.4].

3. UPPER BOUNDS

In this section we give an upper bound of p in terms of R. The key ingredient
is again Minkowsk’s theorem as [3, Theorem 4.1]; which we summarize below.

PROPOSITION 3 (Minkowski’s Theorem). Let m be a positive integer and F C
R? a domain satisfying

(a) F is symmetric with respect to O;

(b) F is convex;

(¢) Vol(F)>m2%.
Then F contains at least m pairs-of points £A; € Z\O, 1 <14 < m, which are
distinct from each other:

Now we state an upper bound of p. The idea is essentially same to [3, §4],
where, however, only deals with the 3-dimensional case.

THEOREM 2. There is a constant C' > 0, such that
(3.1) Rp*t < C.

PROOF: For any diameter AA’ of the ball B(O, R), let’s consider the d — 1-
dimensional hyperellipsoid E C R? as follow:

(i) AA’is along axis of F;

(74) all other semi-axes of E are equal of length h.
Indeed, consider the function of d variables:

22 22, a2
F(zy, - ,xq4) = h—;—i—-“-l- [ +R7§’

then F(x1,---,x4) = 1 gives the hyperellipsoid when AA’ is lying in the z4-
axis. Generally, if the line AA’ has a unit directional vector g, extend it to
a orthnormal basis 3 := {i,- -+ ,uq_1,%q} of R%. Then there exists a unitary
transformation 7' : R¢ — R which sends 8 to the standard orthnormal basis
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{(1,0,---,0),---,(0,---,0,1)} such that T(dg) = (0,---,0,1). Then the d—1-
dimensional hyperellipsoid E has equation F(T(z1,---,24)) = 1. See Figure
3.

FIGURE 3

Now let F' C R? be the domain enclosed by E (including the points of E).
Apparently, F' satisfies the condition (a) and (b) of Minkowski’s Theorem.
Moreover, it is known that the volume of the hyperellipsoid is

ol

™

7hd—1R’
L(g+1)

(3.2)

here T' is the gamma function; so

d d_ d d. d
(3:3) F(§ +1)= §F(§) = 5(5 = 1),
where g = 1 if d is even, vy = % if d is odd. By Minkowski’s Theorem, if we

choose h such that

jus
2

vl

o
L(5+1)

then F' contains an integral point other than O. This implies that, if we set

297 (4+1) . 1
C = —2— and the tree radius »r = CR% 7T, then any ray segment OA

(3.4) hi—1R =24,

2
starting from O will be blocked by some tree at the integral point contained in
F we constructed as above. Since p < r, that we complete the proof. |

Combining Theorem 1 and Theorem 2, we obtain the main result of this article:

THEOREM 3. For d-dimensional orchard visibility problem, as the radius of
orchard R goes to infinity,

1

(3.5) p=O(R™ ™).



4. SOME FURTHER THOUGHTS

We can still ask a lot of questions concerning the orchard visibility problem
in arbitrary dimension. For example, for d = 2, it has been proved in [2] that

p= g or
(4.1) lim pR=1.
R—o00

Inspired by our results, it is natural to ask if we can find a constant [ for
dimension d such that
(4.2) lim p? 1R =1.

R—o0
However, our estimation in this article using polyhedra is apparently not precise
and fine enough for such a conclusion. We will explore this problem in the
future.
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