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Abstract

With the development of deep convolutional networks, autonomous driving has been reforming human
social activities in the recent decade. The core issue of the prevailing automatic driving system is to
study how to integrate the multi-modal perception subsystem effectively, that is, using sensors such as
lidar, RGB camera, and radar to identify general objects in traffic scenes. Extensive investigation shows
that lidar and cameras are the two most powerful sensors widely used by famous autonomous driving
companies such as Tesla and Waymo, which indeed revealed that how to integrate them effectively is
bound to be one of the core issues in the field of autonomous driving in the future. Obviously, these
two kinds of sensors have their inherent advantages and disadvantages. Based on the previous research
works, we are motivated to fuse lidars and RGB cameras together to build a more robust perception
system.

It is not easy to design a model with two different domains from scratch, and a large number of pre-
vious works (e.g., FuseSeg[7]) has sufficiently proved that merging the camera and lidar models can
attain better results on vision tasks than the lidar model alone. However, it cannot adequately han-
dle the inherent correspondence between the camera and lidar data but rather arbitrarily interpolates
between them, which quickly leads to severe distortion, heavy computational burden, and diminishing
performance.

To address these problems, in this paper, we proposed a general 4-step pipeline to establish a con-
nection between lidar and RGB camera models, matching and fusing the features of the lidar and RGB
models. We also defined two kinds of inaccuracies (missing pixels and covered points) in point cloud
projection and did a numerical analysis on them. Furthermore, we proposed a filling algorithm to
remedy the impact of missing pixels. Finally, we proposed a 3D semantic segmentation model, Dense-
FuseNet, which incorporated our techniques, and achieved a noticeable 5.8% and 14.2% improvement
in mIoU and accuracy on top of vanilla SqueezeSeg[17] we reproduced. All code is made open-source
on https://github.com/IDl0T/DenseFuseNet.

Keywords: DenseFuseNet, autonomous driving, 3D semantic segmentation, dense correspondence,
sensor fusion

1

https://github.com/IDl0T/DenseFuseNet


20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Contents

1. Introduction 3
1.1. Open Space 3D Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Proposed Method: DenseFuseNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Related Work 5
2.1. Semantic Segmentation on RGB Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Instance Segmentation on RGB Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3. 3D Semantic Segmentation on Point Clouds . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4. 3D Semantic Segmentation with Point Cloud Projection . . . . . . . . . . . . . . . . . . 7
2.5. Sensor Fusion in 3D Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Our method 7
3.1. Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2. Lidars and Point Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3. Spherical Projection of Lidar Point Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4. Missing pixels and covered points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5. Establishing the U-shaped correspondence . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5.1 Filling Missing Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.2 Lidar Feature to Lidar Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.3 Lidar Image to RGB Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.4 RGB Image to RGB Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.5 Feature Fusion with U-shaped Correspondence . . . . . . . . . . . . . . . . . . 15

3.6. Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. Experiments 15
4.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2. Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3. Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4. U-shaped Correspondence Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5. Conclusion 19

A. Featured Source Code 23
A.1. Model Backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.2. Data Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

B. Acknowledgement 35

2



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

1. Introduction
Autonomous vehicles are becoming increasingly popular among consumers and venture capitalists.

In the first half of 2020, giants and startups in autonomous driving were financed with more than 7.6
billion USD1. In the foreseeable future, autonomous vehicles will eliminate traditional cars and reform
our society. Researchers and business leaders are optimistic that autonomous driving will bring valuable
benefits to human society by massively boosting productivity. More importantly, autonomous driving
technology is expected to solve a critical cause of mortality: traffic accidents2.

A reliable autonomous driving system must have a robust perception system. A perception system
usually constitutes a suite of sensors to gather information on the environment and an AI model to
recognize objects in its surroundings. This paper focuses on an important task in perception: Open
Space 3D Semantic Segmentation.

In this section, we first briefly introduce open space 3D semantic segmentation, one of the central
tasks of autonomous driving. Then we introduce the idea of sensor fusion, a technique to improve the
segmentation performance. Finally, we propose DenseFuseNet, a sensor fusion model with a general
4-step pipeline to fuse arbitrary space-invariant lidar and RGB camera models.

1.1. Open Space 3D Semantic Segmentation

As there are requirements in autonomous driving, the main element of the perception system is to rec-
ognize objects in the surrounding traffic conditions, which is usually treated as open space 3D semantic
segmentation in the traffic scene. Specifically, it requires perception systems to accurately detect the
position, shape, and type of traffic lights, cars, and pedestrians in 3D space. An example of open space
semantic segmentation is in Fig. 1. The precise definition of open space semantic segmentation and why
we choose this task are covered in Section 2.3.

There are two reasons why open space 3D semantic segmentation is so important in autonomous driv-
ing. 1. object classification is necessary since the autonomous driving system should respond differently
to different objects. 2. A point-wise segmentation is also required because it is essential for autonomous
vehicles to know the exact shape of the objects while maneuvering in the road.

For better segmentation qualities, we make use of a technique called sensor fusion.

1.2. Sensor Fusion

There are two major sensors of the perception system, lidars and RGB cameras; both can be used
to enhance open space 3D semantic segmentation. The detailed comparison between lidars and RGB
cameras are in Section 3.2. Since lidars and cameras produce data in different formats, it is a thought-
provoking and unsolved problem how to design a general model that takes both RGB images and point
clouds as inputs and outputs the classified point cloud according to the category of the object (bicycle,
person, etc.).

A recent work, FuseSeg[7], proposes a way to fuse features between a lidar model and an RGB image
model. It uses farthest point sampling and first-order spline interpolation to guide the fusion between a
lidar model and an RGB image model, improving accuracy on 3D semantic segmentation. However, it
does have several drawbacks: 1. Not scalable computation time (high time complexity). 2. Distortion
due to interpolation (Figure. 3). We will be elaborate on these problems later. 3. It is close-sourced,

1finance.eastmoney.com
2According to WHO, 1.35 million lives per year are gone due to traffic accidents
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Figure 1. An result of open space 3D semantic segmentation from [2].

which makes reproducing practically impossible. To solve these problems, we propose a new approach
called DenseFuseNet.

1.3. Proposed Method: DenseFuseNet

We propose a novel method, named DenseFuseNet, for 3D semantic segmentation. In our model, we
exploit the calibration data between lidar and cameras to establish a dense and accurate point correspon-
dence between arbitrary layers of a lidar model (SqueezeSeg[17]) and a pretrained RGB image model
(MobileNetv2[15]), which we call U-shaped correspondence. We propose a 4-step pipeline to establish

4
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the U-shaped correspondence. Then, we warp and fuse the features of the pretrained MobileNetv2 into
SqueezeSeg according to the U-shaped correspondence.

Our 4-step pipeline has a more scalable run time and generates more accurate correspondence, which
results in better fusion quality. Moreover, it can be generalized to any model that is space invariant. As
we previously mentioned, DenseFuseNet is based on SqueezeSeg, which is not close to the best model
for open space 3D semantic segmentation, but the observed improvement on SqueezeSeg may also
materialize in other baseline models. In other words, we can apply our method to the state-of-the-art
lidar models and RGB models for even better performance.

We tested DenseFuseNet on SemanticKITTI[2], a 3D semantic segmentation dataset containing 23,201
lidar scans and as many RGB images. DenseFuseNet achieves a noticeable improvement of 5.8% and
14.2% in mIoU and accuracy respectively, well beyond the plain SqueezeSeg we reproduced.

Point cloud projection is a common preprocess technique to embed 3D point clouds into 2D images
for easier processing. However, in practice, the inaccuracy of the lidar sensor could affect projection
quality. In this paper, we defined and did a numerical analysis on two kinds of inaccuracies, which
we name missing pixels and covered points. We also designed an efficient, GPU-friendly algorithm to
resolve the problem of missing pixels.

Our method is applicable to existing models and empowers autonomous vehicles’ perception systems
for recognizing road objects. Autonomous driving companies can fine-tune and adapt this method to
better combine and utilize the power of lidar and camera. An increasing number of new vehicles embod-
ies the feature of autonomous driving. As autonomous driving systems gradually replace human drivers,
people have good wishes for them to protect lives from traffic accidents. We hope our work will help to
bring convenience and safety to humanity when people hop into their cars and hit the road.

2. Related Work
In this section, we review some closely related tasks and techniques for semantic segmentation and

instance segmentation on RGB images and point clouds, respectively. Besides, we mention some repre-
sentative works related to point cloud projection and sensor fusion.

2.1. Semantic Segmentation on RGB Images

Semantic segmentation is the task of clustering parts of an image together, which belong to the same
object class, and assign a label to the image segment. These labels could include cars, pedestrians,
cyclists, etc. A sample of semantic segmentation on RGB images is shown in Fig. 2(a). One of the
earliest and most innovative works on semantic segmentation3 is FCN[8]. It used a transposed convo-
lutional layers to upsample extracted image features and restore pixel category from abstract features.
Another work U-Net[14] laid the foundation of encoder-decoder architecture of semantic segmentation
models. It establishes pathways to crop and concatenate early feature maps with the feature maps after
upsampling, enabling the information and gradient to better propagate through the entire model. The
state-of-the-art of semantic segmentation to the time is HRNet[16], which maintains a high-resolution
representation throughout the network, and does parallel information exchange between multiple reso-
lution representations.

3In this section, we simply use “semantic segmentation” to stand for semantic segmentation on RGB images for conve-
nience.

5
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2.2. Instance Segmentation on RGB Images

Semantic segmentation means to segment objects by their classes (car, pedestrian. . . ), while instance
segmentation takes a step further to separate different instances (car0, car1, pedestrian0, pedestrian4. . . ).
A visual comparison of semantic segmentation and instance segmentation is in Fig. 2. One of the most
representative work in instance segmentation is Mask R-CNN[6], which combines a object detection
model, Faster-RCNN[13], and FCN[8]. Mask R-CNN used a region proposal network to locate “inter-
esting” regions and utilize them for further classification, bounding box regression, and mask generation.

Compared with semantic segmentation, instance segmentation is more challenging and usually re-
quires computationally heavy models like Mask R-CNN, therefore being less suitable for real-time ap-
plications.

(a) Semantic segmentation (b) Instance segmentation

Figure 2. A comparison between semantic segmentation and instance segmentation. Instance segmentation distin-
guishes different instances of the same class, but semantic segmentation does not.

2.3. 3D Semantic Segmentation on Point Clouds

3D semantic segmentation is analogous to semantic segmentation on 2D images. 2D semantic seg-
mentation means to assign each pixel a label by their class. Similarly, 3D semantic segmentation means
to assign a label to every point in a point cloud (an unordered set of 3D points, usually provided by a
lidar). One step further, 3D semantic segmentation can be conducted on closed scenes (a room) or open
space (on a highway). In the “closed” case, the point clouds to be segmented are usually small, static,
and simple; thus, it has a looser demand on speed. Works like PointNet[12] treated a point cloud in
its crude form, an unordered array of points. It uses a series of multi-layer perceptron to process the
point array and uses a global max pooling to retrieve a feature that is invariant to the input permutation.
However, it only extracts global features, which are inconsistent with the spirit of CNN (extracting local
features per layer). Moreover, it is incredibly slow when the input size is large. Therefore, it doesn’t
quite fit the scenario of autonomous driving.

In the context of autonomous driving, lidar point clouds produced by the lidar on cars are massive
and complex, and the quality of point clouds can vary significantly in different environments. Semantic
segmentation on this kind of point clouds is known as “open space” 3D semantic segmentation.

Similarly, 3D instance segmentation distinguishes different objects of the same class on top of 3D se-
mantic segmentation. While 3D instance segmentation might seem a more suitable task for autonomous
driving since it provides more information for an autonomous driving system, it is at the same time
a more demanding task, which usually requires heavy models that cannot perform inference in real-
time. Currently, many works on autonomous driving consider semantic segmentation a vital task on
autonomous driving, and many datasets like SemanticKITTI[2] only provide semantic labels rather than

6
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instance labels. Moreover, semantic segmentation can be converted to instance segmentation, for exam-
ple, by clustering methods [11]. Therefore, we could say that semantic segmentation is worthy of being
studied for autonomous driving.

Open space 3D semantic segmentation is the main focus of this paper. In the following sections, we
introduce some influential works on open 3D semantic segmentation.

2.4. 3D Semantic Segmentation with Point Cloud Projection

TThe idea of point cloud projection was first introduced in SqueezeSeg[17]. It uses a spherical pro-
jection to embed the 3D point cloud into a 2D grid. This embedding converts the previously sparse 3D
point cloud into a dense 2D representation, calls a “lidar image”. It permits the use of convolutional
neural networks, which are faster and more parameter-efficient than other networks dealing with 3D
point clouds directly. Following works like SqueezeSegv2[18] and SqueezeSegv3[19] further enhanced
SqueezeSeg and achieved a performance boost so massive as they become the most accurate and effi-
cient models in open space 3D semantic segmentation. SqueezeSegv2 introduced a Context Aggregation
Module (CAM) to deal with the noise in the projected lidar image, and SqueezeSegv3 introduced the
Spatially-Adaptive Convolution to apply different filters for different locations of the input lidar image.
In other words, it considers the nature of lidar images that they change dramatically in different image
regions. SqueezeSegv3 is one of the best-performing models in open space 3D semantic segmentation,
but its inference speed drops to around 10 FPS. Aside from the SqueezeSeg series, many other works
such as RangeNet++[9] also adopt point cloud projection.

In practice, due to the external causes like transparent material and precision error, inaccuracies can
appear in the projected lidar image, which we categorize as “missing points” and “covered points”. More
on those in section 3.4.

The mechanics behind point cloud projection are covered in section 3.3.
Another recent work, 3D-MiniNet[1], also embeds point clouds to 2D representation. Different from

point cloud projection, it uses a neural network to learn a 2D representation, then combining it with
projected lidar images. 3D-MiniNet is also one of the top-performing models in open space 3D semantic
segmentation.

2.5. Sensor Fusion in 3D Semantic Segmentation

One recent work, FuseSeg[7], improved the performance of SqueezeSeg[17] by fusing it with a pre-
trained image classification model, MobileNetv2[15].

FuseSeg is an interesting work on sensor fusion. It fuses a SqueezeSeg and a MobileNetv2 together
to improve segmentation accuracy. FuseSeg[7] performs FPS4 on the lidar point cloud to select a set
of “control points” on the lidar feature, calculating their corresponding positions on the RGB feature.
It then uses first-order spline interpolation to establish a dense correspondence used to fuse the RGB
feature to the lidar model. However, it has some imperfections, which we mentions in the next section.

3. Our method
FuseSeg’s[7] approach has several drawbacks: 1. It can cause serious distortion (Fig.3), mainly due to

interpolation on a small number of “control points”, that is, only 48 “control points” are selected out of
32000+ total points per lidar scan. 2. Its method is hardly scalable since both FPS and first-order spline

4Farthest point sampling, which has a time complexity of O(n2).

7
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Figure 3. The artifacts produced by FuseSeg[7]. There are noticeable ghosting such as around the cyclist.

interpolation have a time complexity of O(n2), which causes the inference time to increase dramatically
(empirically proved in [7]) as the number of control points goes up. Though we can manually limit the
number of control points, it is still problematic since we are going to have sensors with higher resolution
in the future. 3. FuseSeg is close-sourced. That’s why we can neither reproduce nor directly make
comparisons.

In this section, we first introduce the sensors used in autonomous driving, as well as the point cloud
format. On top of that, we first give a review on point cloud projection, a core preprocessing fashion to
enable CNNs to process lidar point clouds. Then, we introduce the concept of missing pixels and control
points, their impact on segmentation, and possible solutions. After that, we propose a 4-step approach
to establish a relationship between the lidar model and the RGB model, and its implication on feature
fusion. Finally, we covers the architecture of DenseFuseNet, which incorporates our filling algorithm
and U-shaped correspondence.

3.1. Sensors

An autonomous vehicle is usually equipped with a variety of sensors, often a combination of one lidar
and multiple cameras and radars5. Lidars and RGB cameras have pros and cons, respectively. Table 3.1
compares lidar with RGB cameras from several aspects.

As shown in the table, lidar sensors can provide accurate distance data in a decent range, but it can
be obscured by rain and fog. On the other hand, cameras are cheap and can easily read signs and road
marks, but they are “dumb” sensors that can only output planar images and lose sight at nighttime.

5Radars are mostly used as supplementary sensors, so they are out of the scope of this paper.

8
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Figure 4. An standard sensor suite of an autonomous vehicle [3]

RGB Camera Lidar
Depth Not directly available Can be precisely retrieved
Environmental Dependence Good illumination Clean air (Fog and raindrops reflect laser)
Interference None Multiple lidars can interfere each other
Price $50-1000 Very expensive, usually $70k+, but is dropping

Table 1. Comparison between a lidar and an RGB camera.

3.2. Lidars and Point Clouds

Lidars are arguably the most important sensor in autonomous driving. A lidar emits pulsed laser
beams into its surroundings, and the waves bounce back from the objects and are received by the sensor.
Then the lidar calculates the distance traveled of each laser beam with the time it took to return. It also
calculates the reflectance of the surface the laser beam hits by measuring the intensity of the reflected
beam.

Formally, a laser beam emitted by the lidar corresponds to one point [x, y, z, r] in space, where x, y, z
is its coordinate in the 3D space, and r is the reflectance of the material it hits. Figure 1 shows an
example of lidar point clouds. Notice that the points are denser close to the lidar since the lidar is the
source of emitted laser beams.

With these pros and cons, lidars are widely adopted by various automotive corporations like Waymo,
Lyft, Baidu, etc. as the primary sensor for their autonomous driving system. Lidar can be used in various
ways to perceive surroundings, such as 3D object detection, point cloud segmentation, and SLAM. Lidar
is useful in many fields like robotics, geography, and autonomous driving. Therefore, it’s valuable to
develop methods based on a lidar sensor.

3.3. Spherical Projection of Lidar Point Cloud

Many previous works on 3D semantic segmentation like [17] and [9] rely on spherical projection.
Spherical projection is a way to embed a 3D point cloud into a 2D image, which is easier to process

9
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using CNNs. It works well on lidar point clouds because, as stated in section 3.2, the lidar emits lasers
in all directions. In other words, it is the center of the point cloud that if we let it be the origin and
perform spherical projection on the point cloud, we should be able to retrieve an even grid of points in
the 2D plane.

Formally, a 3D point cloud can be modeled as an unordered set of points [x, y, z], and projected to a
pixel [u, v] in 2D space by:[

u
v

]
=

[
h · (1− (arcsin(z/

√
x2 + y2 + z2 + fovdown)/fov)

w · 1
2
(1− atan2(y, x)/π)

]
(1)

Where [x, y, z] represents an arbitrary point in the 3D Lidar point cloud, and [u, v] is the coordinate of
the projected 2D pixel on the lidar image. h and w are the desired height and width of the output lidar
image. fovup/down is the upper/lower field of view of the lidar sensor, and fov = fovdown + fovup. The
projected image is called the lidar image.

However, Spherical projection has imperfections. Due to the inherent inaccuracy of the lidar sensor,
sometimes multiple lidar points are projected onto the same pixel of the lidar image, and some pixels
end up with no points projected on it. The latter adds difficulties to feature fusion, and the former will
make the average performance drawback 2.36% (in Section 3.1). Therefore, how to quantify and reduce
their impact becomes an important problem in our research. To simplify the language, we introduce the
concepts of missing pixels and covered points.

3.4. Missing pixels and covered points

In practice, spherical projection can introduce two main things that undermine semantic segmentation
effectiveness: missing pixel and covered points. They are caused by the inherent inaccuracy of the lidar
sensor and the environment. An example of missing pixels and covered points are in Fig.5.

The missing points mean that there is no exact one-to-one projection relationship between the 3D
lidar points and range images. In other words, it also implies that 1) many points in the 3D lidar points
will project to the same position (pixel) in range images, and 2) many pixels in range images cannot
trace back to their three-dimensional coordinates in 3D lidar points. Generally, missing pixels can be
classified into three types: 1. the “pepper and salt” single-pixel missing caused by the inherent noise. 2.
the stripe-shaped missing pixels caused by the structural inaccuracy (the inaccuracy in pitch angle) of
the lidar sensor. 3. the large missing patch mainly caused by surfaces that don’t reflect lasers like car
windows and the sky.

Covered points emerge because sometimes multiple lidar points are projected into the same pixel, and
some points are covered by others.

Covered points will introduce two problems: 1. the information that could improve the segmentation
result is lost 2. the segmentation model outputs a segmented lidar image while we want a segmented
point cloud. If we label the points in the original point cloud by the class of the lidar image pixel that they
are projected onto, and this could lead to misclassification where lidar points of different class overlap in
a pixel. For example, a part of a pedestrian behind a car might be misclassified as car class. We assume
the first problem wouldn’t have too much impact according to [12]’s conclusion that a small subset of
points is enough to segment an object. Problem 2 could be remedied by CRF or KNN post-processing,
but it is out of scope in our paper. Still, we quantified its impact statistically in section 4.

10



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

(a) The frequency map

(b) Missing pixels and covered points

Figure 5. Missing pixels and covered points on the frequency map. The brightness of the frequency map describes
how many lidar points are projected onto each pixel. The black area where frequency=0 denotes missing pixels,
while brighter pixels where frequency>1 contains (frequency-1) covered points. Pixels where frequency=1 (dark
purple areas) are normal situations.

3.5. Establishing the U-shaped correspondence

Our goal is to fuse the RGB camera model to the lidar model. Therefore, we attempted to find a
U-shaped correspondence between the feature maps of two models. To explain the notion of U-shaped
correspondence, we first introduce the concept of a dense correspondence. We formally define a dense
correspondence f as:

∀(iA, jA) ∈ A, (iA, jA)
f−→ (iB, jB), s.t.(iB, jB) ∈ B (2)

Where A, B are rectangular feature maps, and (i, j) denotes image coordinates. In simple languages,
a dense correspondence is a pixel to pixel mapping between two feature maps. Also, note that dense
correspondence has transitivity.

Once we have got a dense correspondence from A to B, we can warp and fuse B to A by concatenating
by channels. The result will be a feature map of the same size as A, with as many additional channels as

11
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B has. Note that in order to perform a good feature fusion, we should fuse features by their relationship
in space. For example, we should fuse the region of B that contains a car to the region of A that contains
the same car. Only then the feature fusion would be meaningful to the CNN.

To establish a U-shaped correspondence, we propose a 4-step pipeline in this section. 1. Fill the miss-
ing pixels in the lidar image. 2. Establish a dense correspondence from lidar feature to lidar image. 3.
Establish a dense correspondence from lidar image to RGB image. 4. Establish a dense correspondence
from RGB image to RGB feature. Then, we can obtain a U-shaped correspondence by combining the
correspondences in step (2)(3)(4). An overall view of the 4-step pipeline is visualized in Fig.6.

Figure 6. An overview of the 4-step pipeline to establish U-shaped correspondence. (1) fills the missing pixels
in the input lidar image (2) and (4) denotes the dense correspondence established by space invariance. (3) is the
dense correspondence established by lidar-camera calibration.

3.5.1 Filling Missing Pixels

To better establish dense correspondences, we preprocessed the lidar images by filling out missing pixels.
As in section 3.4, missing pixels are of three classes. We propose a unified method to deal with the

“pepper and salt” and stripe-shaped missing pixels together. We first apply a series of median filters with
increasing kernel size on the lidar image, while always keeping the original data. In other words, we
define a mask indicating the pixels we need to fill, and keep the rest untouched. Formal algorithms is in
1

With our filling algorithm, we successfully reduced the missing pixels percentage from 24.323% to
6.274%

A Failed Approach to Fill Missing Pixels In fact, we first tried to use a masked median filter com-
bined heuristics to fill the entire lidar image. That failed approach is presented in this section.
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Algorithm 1: Filling missing pixels
Input: lidar image, initial mask
Output: filled lidar image
filters← 3x3, 5x5, 7x7, 13x13, ...; // median filters of different kernel
sizes

for filter in filters do
median← filter(lidar image);
lidar image← lidar image + median × mask;
mask← where abs(lidar image) < eps; // pixels still missing

(a) Unfilled r channel

(b) Filled r channel

(c) Zoomed

Figure 7. Filling the r (range) channel of a lidar image. (a) is the unfilled r channel, (b) is filled with our algorithm,
and (c) is a zoomed comparison between them.

In the early stage of our research, we tried to fill missing pixels by: 1. For every missing pixels p0,
select the set of pixels s = {p|D(p, p0) < k} where D(x, y) denotes the Manhattan distance between
pixels x and y. Smaller k results in finer filling result, but less missing pixels are filled. 2. Fill p0 with the
median in s. 3. Fill the rest of the points with heuristics specific to channels (range, x, y, z, reflectance)
6.

However, this algorithm was hard to compute in parallel since the size of s is variable. Thus, we had
to seek out new methods that can be represented as mass tensor computation on GPUs. What we finally

6For example, fill the top half of the range channel with the global maximum, and fill the lower half with the local
minimum.
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came up with was the filling method stated in section 7. Our new method resulted in a 20x speedup
compared with this one.

3.5.2 Lidar Feature to Lidar Image

In this step, we find the dense correspondence from lidar feature to lidar image. In a CNN, a pixel on the
feature map is a convolution sum over a square receptive field. In light of this, we calculate the dense
correspondence between layer l + 1 and layer l. For every pixel in the feature map of layer l + 1, we
map it to the geometric center of its receptive field as Figure 8.

In this process, we use the geometric center of the receptive fields of the feature map as the represen-
tative coordinates for each pixel on the feature map of layer l + 1, and map from layer l + 1 to layer l
repeatedly to retrieve the correspondence between arbitrary layers of the network.

Figure 8. The correspondence between layer l + 1 and layer l, with 3x3 kernel. Even kernel size also works by
introducing floating number.

Then, we can map from layer l + 1 to layer l repeatedly to retrieve a dense correspondence between
two arbitrary layers of the network.

In this way, a dense correspondence is always available as long as we are able to determine the
“center.” Thus, our method is highly generalizable for most space-invariant models. For instance, one
top-performing model of 3D semantic segmentation, 3D-MiniNet [1], once being the state-of-the-art on
the Semantic-KITTI leaderboard, which is based on neighbor searches on grids, is also applicable by
our method. In this case, we can turn 3D-MiniNet into a sensor fusion model in split seconds.

Specifically, to the model backbone we used in this paper, SqueezeSeg, all of its convolution layers
is of kernel size 1x1 without padding, or 3x3 with a padding of 1 pixel, which means the center of the
receptive fields of each pixel in the feature map of layer l+1 is at exactly the same coordinate in feature
map l. Moreover, SqueezeSeg only downsamples on width. Therefore, we can induce a clean formula
specific for the dense correspondence between layer a and b, where a < b:

Ab[i, j]→ Aa[i, j × downsample factor] (3)
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3.5.3 Lidar Image to RGB Image

The best way to establish connections between lidar image and RGB image is to exploit the calibration
file usually provided by every multi-modal dataset.

The calibration file specifies a 3x4 matrix P, which denotes the transformation from the lidar coordi-
nate to RGB camera coordinates. Therefore, we are able to map the points in the lidar point cloud to
pixels on the RGB image:

xrgbi = PiTrxlidar (4)

Where Tr is the transformation from the lidar coordinate to the 0-th camera coordinate. Pi is the
transformation matrix from the 0-th camera coordinate to the i-th camera coordinate. Applying Tr then
P2 translates points in the lidar coordinate xlidar = [x, y, z, 1]T to pixel positions on the second RGB
camera xrgb = [r, c, 1]T .

3.5.4 RGB Image to RGB Feature

Since the RGB model are also a CNN, we can use the method in Section 3.5.2 in reverse to establish the
dense correspondence from RGB image to RGB feature:

Ab[i, j]→ Aa[i, b
j

downsample factor
c] (5)

3.5.5 Feature Fusion with U-shaped Correspondence

We combine three dense correspondences for a U-shaped correspondence f .
With the 4-step pipeline (filling + 3 dense correspondences), we are able to determine f between

arbitrary lidar feature maps and arbitrary RGB feature maps. Then, we are granted the routes through
which we can fuse features together. We warp the RGB features such that Awarped[i, j] = Argb[f(i, j)],
and simply concatenate Awarped to the lidar model. There are more possible ways to fuse features but is
out of the scope of this paper and might be covered in future works.

3.6. Model Architecture

We adopted the model structure of FuseSeg[7], which constitutes two models: SqueezeSeg[17] as
segmentation backbone and MobileNetv2[15] as RGB feature extractor. We used the implementation
of MobileNetv2 from Pytorch Hub[10], with weights pretrained on ImageNet[4]. We didn’t bother
fine-tuning the MobileNetv2 in this paper, even though it should improve performance.

The feature maps of the 7th, 14th, 19th layers of a MobileNetv2 are fused to the fire2, fire4, fire7
layers of SqueezeSeg by simply concatenating them by channel.

4. Experiments
In this section, we first introduce the SemanticKITTI, the dataset we use, and compare it with its pre-

decessor, KITTI. Then, we did a quantitative analysis on missing pixels and covered points. Finally, we
bring in the result of our model training and verified the effectiveness of the U-shaped correspondence.
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Figure 9. Our model architecture. It’s identical to FuseSeg[7]. Still, we visualized the architecture here.

4.1. Dataset

Different from the previous works [17], [7], most of which are trained on KITTI[5], we used SemanticKITTI[2]
dataset in this paper. SemanticKITTI is the largest lidar-based semantic segmentation dataset with
23,201 and 20,351 scans in the train set and test set, and 4,549 million points in total. Compared
with KITTI, SemanticKITTI provides point mask annotation, an improvement on the 3D bounding box
annotation of KITTI. More and more recent works such as Squeezesegv3[19] and 3D-MiniNet[1] turns
to SemanticKITTI instead of KITTI.

However, SemanticKITTI does not provide an official benchmark for sensor fusion models. So, we
did some modifications on the original dataset. First, we cropped the 360◦ lidar scan to the front 90◦.
Second, we aligned the left RGB camera images to the lidar scans and bundled them together as our
model’s input.

4.2. Quantitative Analysis

In section 3.4, we introduced the concept of missing pixels and covered points. To better understand
their impact on segmentation and guide future research, we did a statistical analysis on SemanticKITTI.
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Figure 10. The label distribution of SemanticKITTI[2].

We sampled a 140-million-point subset from SemanticKITTI to speedup the process. Also, we pro-
pose some metrics to quantify the impact of missing pixels and covered points on semantic segmentation:

Missing percentage =
missing pixels

total pixels
(6)

Covered percentage =
covered points

total points
× 100% (7)

percentage of CPF =
CPF

covered points
× 100% (8)

accuracy drawback =
CPF

total points
(9)

Where CPF means the number of covered points falsely classified if no post-processing was per-
formed. That is to say, the final result is calculated purely by the classified lidar image, that every point
p in the point cloud is labeled according to the predicted category of the pixel (xp, yp) it lands on after
spherical projection. The result is in table 4.2.

Ideally, since we set the resolution of the lidar image the same as the resolution of the lidar, every
missing pixel must result in an extra point projected into another pixel. In other words, the number of
missing pixels should be equal to the number of covered points. However, the number of covered points
is less than missing pixels in practice, since some lasers emitted by the lidar never come back. Formally,
S + C = W × H , where S is the size of the point cloud and C is the number of laser beams whose
reflections aren’t received by the sensor.
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Quantity Value
Missing pixels 36,191,641
Covered points 27,932,231
Total points 140,540,078
Total pixels in lidar image 148,799,488
Missing percentage 24.323%
Missing percentage after filling 6.274%
Covered percentage 19.878%
CPF 3329974
% of CPF 11.923%
accuracy drawback 2.369%

Table 2. Statistical Analysis on SemanticKITTI

4.3. Training

The model was trained with Pytorch 1.5.0 on 4 Nvidia Titan X GPUs for 20 epochs in about 24 hours.
We built our model on top of the lidar-bonnetal framework [9]. However, we encountered a problem
which we soon realized was more severe than it appeared to be.

We trained DenseFuseNet for the first time, and we found that all training metrics (loss, accuracy, iou)
started to deteriorate after some epochs, as shown in Fig.11. This seems to be a common problem of
the ill-conditioned Hessian matrix, which could be alleviated by increasing momentum and decreasing
learning rate. However, even if we put a massive effort into tuning, the peak performance never really
improved, as in Figure 13(c).

Then, we tried to train a vanilla SqueezeSeg[17] from scratch using the lidar-bonnetal framework.
However, the same problem appeared. The model converged much faster than expected (Converges
under 20 epochs, compared with 100-epoch convergence in the original paper), and the performance
peaked at iou=0.17, much lower than the peak iou of 0.29 claimed by the framework author. After that,
we trained from scratch a SqueezeSegv3[19], and it behaves just as the paper claimed. We speculate that
this issue on training is caused by a bug in the framework [9] we used but was unable to locate it.

We have contacted the author and will continue to work on this problem. The cause and solution
of it will likely be covered in our future works. Currently, according to our experiment outcome, we
make a comparison between DenseFuseNet and the SqueezeSeg model we reproduced in table 4.3. Our
method achieved a noticeable improvement of 5.8% in mIoU and 14.2% in accuracy over the reproduced
SqueezeSeg. A sample segmentation result on the validation set is in Fig. 12.

Method mIoU (%) Accuracy (%)
SqueezeSeg 17.0 59.7
DenseFuseNet 22.8 73.9
Difference +5.8 +14.2

Table 3. Mean IoU (intersection over union) and segmentation accuracy for our model and baseline. The highest
score in each column is marked in bold.
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Figure 12. Example segmentation result of DenseFuseNet. From top down is respectively depth image, prediction,
and ground truth.

4.4. U-shaped Correspondence Effectiveness

We tested our U-shaped correspondence on some sample scan-image pairs. In the test, we established
a U-shaped correspondence between lidar images and RGB images directly rather than between feature
maps for visualization purposes. We projected the lidar points to its corresponded position on the RGB
image. The results are shown in Fig.14.

From Fig.14, we can roughly say that the lidar points are projected onto the RGB image with good
accuracy. On top of that, we tried to warp the RGB image into a “ready-to-fuse” form as in section
3.5.5. The result is in Fig.15. With our U-shaped correspondence, we improved the quality of the
warped feature on top of FuseSeg[7].

5. Conclusion
In this paper, we proposed a general and efficient 4-step pipeline to establish a point-to-point cor-

respondence between lidar features and RGB features. Besides, we quantitatively analyzed two kinds
of noises’ impact on semantic segmentation and mentioned possible ways to remedy them. Also, we
designed an algorithm to fill the projected lidar images by applying a series of median filters with in-
creasing kernel size. Finally, we proposed a 3D semantic segmentation model, DenseFuseNet, using our
methods to fuse a SqueezeSeg and a MobileNetv2. Tested on the SemanticKITTI dataset, DenseFuseNet
achieved a noticeable improvement of 5.8% in mIoU and 14.2% in accuracy over plain SqueezeSeg we
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(a) Learning rate

(b) Training loss

(c) Valid IoU

Figure 13. The training logs of DenseFuseNet with different learning rate scheduling and momentum.

reproduced.
The limitation of DenseFuseNet mainly lies in the filling algorithm. It is unable to handle large patches

of missing pixels since, in order to fill them, we either need to apply more filters or apply larger filters.
Using more filters will make the filling algorithm a speed bottleneck, and increasing kernel sizes will
result in worse filling quality. In other words, our filling algorithm requires hyperparameter tuning, thus
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(a) All points in the point cloud (b) Points of class “car”

Figure 14. The visualization of U-shaped correspondence. Lidar points are projected to its corresponded counter-
part.

(a) Original image

(b) Warped image by U-shaped correspondence

Figure 15. The image warped according to U-shaped correspondence. It doesn’t have the ghosting in Fig. 3. The
color inaccuracy is due to the dataset we used.

being less flexible on different tasks. Moreover, we didn’t figure out the cause of the problem mentioned
in Section 4.3. We would follow up on it in our GitHub repository.

The pipeline, algorithm, and model proposed in this paper will provide a baseline for sensor fusion in
3D semantic segmentation, and they might open up a novel pathway fusing fully-fledged models into a
multi-input model. We believe our work will contribute to empower the multi-sensory perception system
of autonomous vehicles, and hopefully accelerate autonomous vehicles’ popularization.
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A. Featured Source Code
A.1. Model Backbone

from __future__ import print_function
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.utils import _pair, _quadruple

class Fire(nn.Module):
"""
In channel: inplanes
Out channel: expand1x1_planes + expand3x3_planes

"""

def __init__(self, inplanes, squeeze_planes, expand1x1_planes,
expand3x3_planes):

super(Fire, self).__init__()
self.inplanes = inplanes
self.activation = nn.ReLU(inplace=True)
self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,

kernel_size=1)
self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,

kernel_size=3, padding=1)

def forward(self, x):
x = self.activation(self.squeeze(x))
return torch.cat([self.activation(self.expand1x1(x)),

self.activation(self.expand3x3(x))], 1)

class MedianPool2d(nn.Module):
""" Median pool (usable as median filter when stride=1) module.
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reference:
https://gist.github.com/rwightman/f2d3849281624be7c0f11c85c87c1598

Args:
kernel_size: size of pooling kernel, int or 2-tuple
stride: pool stride, int or 2-tuple
padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad
same: override padding and enforce same padding, boolean

"""
def __init__(self, kernel_size=3, stride=1, padding=0, same=True):
super(MedianPool2d, self).__init__()
self.k = _pair(kernel_size)
self.stride = _pair(stride)
self.padding = _quadruple(padding) self.same = same

def _padding(self, x):
if self.same:
ih, iw = x.size()[2:]
if ih % self.stride[0] == 0:
ph = max(self.k[0] - self.stride[0], 0)

else:
ph = max(self.k[0] - (ih % self.stride[0]), 0)

if iw % self.stride[1] == 0:
pw = max(self.k[1] - self.stride[1], 0)

else:
pw = max(self.k[1] - (iw % self.stride[1]), 0)

pl = pw // 2
pr = pw - pl
pt = ph // 2
pb = ph - pt
padding = (pl, pr, pt, pb)

else:
padding = self.padding

return padding

def forward(self, x):
x = F.pad(x, self._padding(x), mode=’reflect’)

x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1],
self.stride[1])

x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0]
return x

class Backbone(nn.Module):
"""

Class for Squeezeseg. Subclasses PyTorch’s own "nn" module
"""
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def __init__(self, params):
super(Backbone, self).__init__()

print("Using Yau Backbone")

self.use_range = params["input_depth"]["range"]
self.use_xyz = params["input_depth"]["xyz"]
self.use_remission = params["input_depth"]["remission"]
self.drop_prob = params["dropout"]
self.OS = params["OS"]
self.mobilenet = torch.hub.load(’pytorch/vision:v0.6.0’,

’mobilenet_v2’, pretrained=True).cuda()
self.mobilenet.eval()

self.input_depth = 0
self.input_idxs = []
if self.use_range:
self.input_depth += 1
self.input_idxs.append(0)

if self.use_xyz:
self.input_depth += 3
self.input_idxs.extend([1, 2, 3])

if self.use_remission:
self.input_depth += 1
self.input_idxs.append(4)
self.input_depth += 1 # proj_mask

self.input_idxs.append(5)

print("Depth of backbone input = ", self.input_depth)

self.strides = [2, 2, 2, 2]
# check current stride
current_os = 1
for s in self.strides:
current_os *= s

print("Original OS: ", current_os)

# make the new stride
if self.OS > current_os:
print("Can’t do OS, ", self.OS,

" because it is bigger than original ", current_os)
else:

for i, stride in enumerate(reversed(self.strides), 0):
if int(current_os) != self.OS:
if stride == 2:
current_os /= 2
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self.strides[-1 - i] = 1
if int(current_os) == self.OS:
break

print("New OS: ", int(current_os))
print("Strides: ", self.strides)

# encoder
self.conv1a = nn.Sequential(nn.Conv2d(self.input_depth, 64,

kernel_size=3, stride=[1, self.strides[0]], padding=1),
nn.ReLU(inplace=True))

self.conv1b = nn.Conv2d(self.input_depth, 64, kernel_size=1, stride=1,
padding=0)

self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=[1,
self.strides[1]], padding=1)

self.fire2 = Fire(64 + 32, 16, 64, 64) # fuse 7th
self.fire3 = Fire(128, 16, 64, 64)
self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=[1,

self.strides[2]], padding=1)
self.fire4 = Fire(128 + 96, 32, 128, 128) # fuse 14th
self.fire5 = Fire(256, 32, 128, 128)
self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=[1,

self.strides[3]], padding=1)
self.fire6 = Fire(256, 48, 192, 192)
self.fire7 = Fire(384 + 1280, 48, 192, 192) # fuse 19th
self.fire8 = Fire(384, 64, 256, 256)
self.fire9 = Fire(512, 64, 256, 256)
self.medpool3 = MedianPool2d()
self.medpool5 = MedianPool2d(kernel_size=5)
self.medpool7 = MedianPool2d(kernel_size=7)
self.medpool13 = MedianPool2d(kernel_size=13)
self.medpool29 = MedianPool2d(kernel_size=29)

# output
self.dropout = nn.Dropout2d(self.drop_prob)

self.last_channels = 512

def run_layer(self, x, layer, skips, os):
y = layer(x)
if y.shape[2] < x.shape[2] or y.shape[3] < x.shape[3]:
skips[os] = x.detach()
os *= 2

x = y
return x, skips, os

def run_mobilenet(self, x):
rgb_features = {}
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for i, layer in enumerate(self.mobilenet.features):
x = layer(x)
if i == 6:
rgb_features[’7th’] = x.clone().detach()

elif i == 13:
rgb_features[’14th’] = x.clone().detach()

elif i == 18:
rgb_features[’19th’] = x.clone().detach()

return rgb_features

def fill_missing_points(self, tensor, mask):
"""
Fill missing points in ‘tensor‘ indicated by ‘mask‘
Args:

tensor: any H * W tensor
mask: boolean mask where ‘False‘ indicates missing points

Returns:
median: filled tensor

"""
eps = 1e-6
H, W = tensor.shape[0], tensor.shape[1]
assert H % 2 == 0
device = tensor.device
tensor = tensor * mask
# repeatedly apply median filter
median = tensor.clone()
medpools = [self.medpool3, self.medpool5, self.medpool7,

self.medpool13, self.medpool29]
for medpool in medpools:

median = median +
medpool(median.unsqueeze(0).unsqueeze(0)).squeeze() *
torch.logical_not(mask)

mask = median.abs() > eps
return median

def get_rgb_feature(self, range_img, rgb_features, calib_matrix):
"""get ready-to-fuse rgb features
Note: Now only support batch size == 1!
Args:
range_img: batchsize=1 * ch * H * W tensor, channel = [r, x, y, z,

remission, proj_mask]
rgb_features: dict[rgb_layer_name] of rgb features, which are ch * H *

W tensors
Returns:
corresponding_features: dict[sqseg_layer_name] of processed features
"""
xyz = {}
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names = [’fire2’, ’fire4’, ’fire7’]
names_rgb = [’7th’, ’14th’, ’19th’]
strides = {’fire2’:4, ’fire4’:8, ’fire7’:16}
device = range_img.device
assert range_img.shape[0] == 1, "batch size != 1, but now only support

batch size == 1"
range_img = range_img[0]
a = range_img[1:4, :, ::2].clone().detach() # x, y, z
mask = range_img[4, :, ::2].clone().detach().bool()
for name in names:
a, mask = a[:, :, ::2], mask[:, ::2] # only downsample on width
li = []
for i in range(3): # xyz
li.append(self.fill_missing_points(a[i].clone(), mask)) # with

missing points now
xyz[name] = torch.stack(li, dim=0).reshape(3, -1) # flatten

# lidar_points -> RGB
rgb_idx = {}
for layer in names:
# corresponding row and column on RGB
rgb_idx[layer] = torch.mm(calib_matrix, torch.cat((xyz[layer],

torch.ones((1, xyz[layer].shape[1]), device=device))))
rgb_idx[layer][:2, :] /= rgb_idx[layer][2, :] # normalize
rgb_idx[layer] = rgb_idx[layer][:2, :] # discard useless channel
rgb_idx[layer] = rgb_idx[layer].reshape(2, range_img.shape[1],

range_img.shape[2] // strides[layer]) # reshape to the same size as
range feature

# clamp the out-of-bound points inside
for na, nb in zip(names, names_rgb):
H, W = rgb_features[nb].shape[2], rgb_features[nb].shape[3]

rgb_idx[na][0, :, :] = rgb_idx[na][0, :, :].clamp(min=0, max=H - 1)
rgb_idx[na][1, :, :] = rgb_idx[na][1, :, :].clamp(min=0, max=W - 1)

# retrieve RGB feature by correspondence (flow)

flow = {}
flow[’fire2’] = torch.round(rgb_idx[’fire2’] / 8).long() # mobilenetv2

7th
flow[’fire4’] = torch.round(rgb_idx[’fire4’] / 16).long() # mobilenetv2

14th
flow[’fire7’] = torch.round(rgb_idx[’fire7’] / 32).long() # mobilenetv2

19th
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corresponding_features = {}

corresponding_features[’fire2’] = rgb_features[’7th’][0, :,
flow[’fire2’][0, :], flow[’fire2’][1, :]]

corresponding_features[’fire4’] = rgb_features[’14th’][0, :,
flow[’fire4’][0, :], flow[’fire4’][1, :]]

corresponding_features[’fire7’] = rgb_features[’19th’][0, :,
flow[’fire7’][0, :], flow[’fire7’][1, :]]

return corresponding_features

def forward(self, x, rgb_image, calib_matrix):
# fuse preparation
rgb_features = self.run_mobilenet(rgb_image)
assert len(calib_matrix) == 1, "now only support batch size == 1"
calib_matrix = calib_matrix[0]
features = self.get_rgb_feature(x, rgb_features, calib_matrix) #

features ready to concat

# filter input
x = x[:, self.input_idxs]

# run cnn
# store for skip connections
skips = {}
os = 1

# encoder
skip_in = self.conv1b(x)
x = self.conv1a(x)

skips[1] = skip_in.detach()
os *= 2

x, skips, os = self.run_layer(x, self.maxpool1, skips, os)

x = torch.cat([x, features[’fire2’].unsqueeze(0)], dim=1)
x, skips, os = self.run_layer(x, self.fire2, skips, os)
x, skips, os = self.run_layer(x, self.fire3, skips, os)
x, skips, os = self.run_layer(x, self.dropout, skips, os)
x, skips, os = self.run_layer(x, self.maxpool2, skips, os)
x = torch.cat([x, features[’fire4’].unsqueeze(0)], dim=1)
x, skips, os = self.run_layer(x, self.fire4, skips, os)
x, skips, os = self.run_layer(x, self.fire5, skips, os)
x, skips, os = self.run_layer(x, self.dropout, skips, os)
x, skips, os = self.run_layer(x, self.maxpool3, skips, os)
x, skips, os = self.run_layer(x, self.fire6, skips, os)
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x = torch.cat([x, features[’fire7’].unsqueeze(0)], dim=1)
x, skips, os = self.run_layer(x, self.fire7, skips, os)
x, skips, os = self.run_layer(x, self.fire8, skips, os)
x, skips, os = self.run_layer(x, self.fire9, skips, os)
x, skips, os = self.run_layer(x, self.dropout, skips, os)

return x, skips

def get_last_depth(self):
return self.last_channels

def get_input_depth(self):
return self.input_depth

A.2. Data Pipeline

class SemanticKitti(Dataset):

def __init__(self, root,
sequences,
labels,
color_map,
learning_map,
learning_map_inv,
sensor,
max_points=150000,
gt=True):

self.root = os.path.join(root, "sequences")
self.sequences = sequences
self.labels = labels
self.color_map = color_map
self.learning_map = learning_map
self.learning_map_inv = learning_map_inv
self.sensor = sensor
self.sensor_img_H = sensor["img_prop"]["height"]
self.sensor_img_W = sensor["img_prop"]["width"]
self.sensor_img_means = torch.tensor(sensor["img_means"],

dtype=torch.float)
self.sensor_img_stds = torch.tensor(sensor["img_stds"],

dtype=torch.float)
self.sensor_fov_up = sensor["fov_up"]
self.sensor_fov_down = sensor["fov_down"]
self.max_points = max_points
self.gt = gt
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self.nclasses = len(self.learning_map_inv)

if os.path.isdir(self.root):
print("Sequences folder exists! Using sequences from %s" % self.root)

else:
raise ValueError("Sequences folder doesn’t exist! Exiting...")

assert(isinstance(self.labels, dict))
assert(isinstance(self.color_map, dict))
assert(isinstance(self.learning_map, dict))
assert(isinstance(self.sequences, list))

self.scan_files = []
self.label_files = []
self.rgb_files = []

# fill in with names, checking that all sequences are complete
for seq in self.sequences:

seq = ’{0:02d}’.format(int(seq))

print("parsing seq {}".format(seq))

scan_path = os.path.join(self.root, seq, "velodyne")
label_path = os.path.join(self.root, seq, "labels")
rgb_path = os.path.join(self.root, seq, "image_2")

scan_files = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(scan_path)) for f in fn if is_scan(f)]

label_files = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(label_path)) for f in fn if is_label(f)]

rgb_files = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(rgb_path)) for f in fn if is_rgb(f)]

if self.gt:
assert(len(scan_files) == len(label_files))

self.scan_files.extend(scan_files)
self.label_files.extend(label_files)
self.rgb_files.extend(rgb_files)

# sort for correspondance
self.scan_files.sort()
self.label_files.sort()
self.rgb_files.sort()

print("Using {} scans from sequences {}".format(len(self.scan_files),
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self.sequences))

def __getitem__(self, index):
scan_file = self.scan_files[index]

rgb_file = self.rgb_files[index]
if self.gt:
label_file = self.label_files[index]

if self.gt:
scan = SemLaserScan(self.color_map,

project=True,
H=self.sensor_img_H,
W=self.sensor_img_W,
fov_up=self.sensor_fov_up,
fov_down=self.sensor_fov_down)

else:
scan = LaserScan(project=True,

H=self.sensor_img_H,
W=self.sensor_img_W,
fov_up=self.sensor_fov_up,
fov_down=self.sensor_fov_down)

# open and obtain scan
scan.open_scan(scan_file)
if self.gt:
scan.open_label(label_file)
# map unused classes to used classes (also for projection)
scan.sem_label = self.map(scan.sem_label, self.learning_map)
scan.proj_sem_label = self.map(scan.proj_sem_label, self.learning_map)

# make a tensor of the uncompressed data (with the max num points)
unproj_n_points = scan.points.shape[0]
unproj_xyz = torch.full((self.max_points, 3), -1.0, dtype=torch.float)
unproj_xyz[:unproj_n_points] = torch.from_numpy(scan.points)
unproj_range = torch.full([self.max_points], -1.0, dtype=torch.float)
unproj_range[:unproj_n_points] = torch.from_numpy(scan.unproj_range)
unproj_remissions = torch.full([self.max_points], -1.0,

dtype=torch.float)
unproj_remissions[:unproj_n_points] = torch.from_numpy(scan.remissions)
if self.gt:
unproj_labels = torch.full([self.max_points], -1.0, dtype=torch.int32)
unproj_labels[:unproj_n_points] = torch.from_numpy(scan.sem_label)

else:
unproj_labels = []

# get points and labels
proj_range = torch.from_numpy(scan.proj_range).clone()
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proj_xyz = torch.from_numpy(scan.proj_xyz).clone()
proj_remission = torch.from_numpy(scan.proj_remission).clone()
proj_mask = torch.from_numpy(scan.proj_mask)
if self.gt:
proj_labels = torch.from_numpy(scan.proj_sem_label).clone()
proj_labels = proj_labels * proj_mask

else:
proj_labels = []

proj_x = torch.full([self.max_points], -1, dtype=torch.long)
proj_x[:unproj_n_points] = torch.from_numpy(scan.proj_x)
proj_y = torch.full([self.max_points], -1, dtype=torch.long)
proj_y[:unproj_n_points] = torch.from_numpy(scan.proj_y)
proj = torch.cat([proj_range.unsqueeze(0).clone(),

proj_xyz.clone().permute(2, 0, 1),
proj_remission.unsqueeze(0).clone()])

proj = (proj - self.sensor_img_means[:, None, None]
) / self.sensor_img_stds[:, None, None]

proj = proj * proj_mask.float() # missing pixel set to all 0s
proj = torch.cat([proj, proj_mask.unsqueeze(0).clone().float()]) # add

channel on top of sqseg

# get name and sequence
path_norm = os.path.normpath(scan_file)
path_split = path_norm.split(os.sep)
path_seq = path_split[-3]
path_name = path_split[-1].replace(".bin", ".label")

# crop to front 90 deg
proj = proj[:, :, 768:1280]
proj_labels = proj_labels[:, 768:1280]

# get rgb image
raw_image = Image.open(rgb_file)
preprocess = transforms.Compose([

transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,

0.225])
])
rgb_image = preprocess(raw_image)

calib_path = os.path.join(self.root, path_seq, "calib.txt")
# read calib file
calib = {}
with open(calib_path, ’r’) as file:
for line in file.readlines():
key, value = line.split(":", 1)
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value = torch.tensor([float(i) for i in value.split()],
dtype=torch.float).reshape(3, 4)

calib[key] = value
Tr = torch.cat((calib[’Tr’], torch.tensor([[0., 0., 0., 1.]])))
P2 = calib[’P2’]
calib_matrix = torch.mm(P2, Tr)

return proj, proj_labels, rgb_image, calib_matrix

def __len__(self):
return len(self.scan_files)

@staticmethod
def map(label, mapdict):
maxkey = 0
for key, data in mapdict.items():
if isinstance(data, list):
nel = len(data)

else:
nel = 1

if key > maxkey:
maxkey = key

if nel > 1:
lut = np.zeros((maxkey + 100, nel), dtype=np.int32)

else:
lut = np.zeros((maxkey + 100), dtype=np.int32)

for key, data in mapdict.items():
try:
lut[key] = data

except IndexError:
print("Wrong key ", key)

return lut[label]
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