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Summary

As analysts for the Transportation Security Administration, we explore the
effects of the new 100% baggage screening law. Our first goal is to find the op-
timal number of Explosive Detection Systems (EDS) that an airport will require
to meet the new federal mandates. In addition, we develop a scheduling algo-
rithm to minimize airport congestion. Lastly, we use an analysis of cutting-edge
technology, including Explosive Trace Detection (ETD), for recommendations
concerning the future of airport security.

We develop three models to estimate the optimal number of EDS machines
required for the two largest airports in our region. Our first model is a simple
approximation; we then develop a more accurate multichannel queuing system
model. Finally, we create an influx simulation to analyze minute-by-minute
baggage arrivals. This model accurately examines passenger arrival dynamics,
including the build-up of baggage throughout peak hours of operation.

For an optimum peak-hour schedule, we arrange the flights so that pas-
sengers are equally distributed among evenly spaced time intervals. This ar-
rangement minimizes congestion in the airport and turmoil if delays occur. We
find this optimal schedule for any given set of flights. Finally, by combining
this model with our influx simulation, we find that airport A requires 23 EDS
machines at a cost of $25.3 million and airport B requires 24 EDS at $25.9 million.

We formulate recommendations for security decision-makers and address
their concerns, including our dismissal of ETDs as a supplement to EDSs.
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EDS Modeling
Model 1: The Hasty Model

To find a quick approximation for the number of EDSs needed, we first
determine the total number of people who use the airport during the given
peak hours.

The problem statement provides a range of probabilities for passenger
turnout for each flight. Because the ranges are broad, we assume that:

e 85% of people show up for flights with 85 or fewer seats;
e 80% of people show up for flights with between 128 and 215 seats; and
e 75% of people show up for flights with 350 seats.

The expected number of passengers who show up for a flight, x,, is the
number n of passengers scheduled to be on the flight times the probability p of
showing up:

fe = NP.

An EDS can scan between 160 and 210 bags per hour; to account for the
worst case, we assume 160 bags per hour. Let B be the number of bags to be
scanned and z be the number of EDS scanners needed at the airport. Then

B
T =——
160t’

where ¢ is the number of hours of operation of the scanners.

We assume that all passengers arrive and check their bags 2 hours before
departure, so that ¢ = 2.

Each EDS scanner costs $1 million plus an installation cost I (dependent on
the airport), for a total cost of

Cost = (1,000,000 + I)x.

The number of bags to be scanned for a flight is the expected number of
passengers times the average number of bags per person. According to the
problem statement, the distribution is 0 bags: 20%, 1 bag: 20%, and 2 bags:
60%. The average is 1.4 bags per passengert, the bag rate. We have

B=14pu,.

We assume that all bags are present at the beginning of the peak hour and
that the scanners have the complete time to work on them at a constant rate, so
that each scanner can process a total of 320 bags over the two-hour period.
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Table 1.
Flights at airport A and their expected numbers of passengers.

Type | Seats/flight Flights Occupancy Expected passengers
1 34 10 70-100%— 289
2 46 4 use 85% 156
3 85 3 217
4 128 3 60-100%— 307
5 142 19 use 80% 2158
6 194 5 776
7 215 1 172
8 350 1 50-100%—
use 75% 263
Totals 46 4338
Airport A

Table 1 shows a breakdown of the flights at airport A and the expected
number of passengers for each flight.

From the table, we can determine that in the peak hour, airport A will see
about 4,338 people leave on 46 flights. We estimate the total number of bags
to be 4,338 x 1.4 ~ 6,072, hence approximately [6100/320] ~ 19 scanners are
needed. For airport A, we have I = $100, 000; so the total cost of the scanners
is $20.9 million.

Airport B

The calculations for airport B are similar. At the peak hour, 4,665 people
leave on 48 flights with 6,531 bags, requiring 21 scanners. For airport B, we
have I = $80, 000; the total cost of the scanners is $22.68 million.

The Extremes of Being Hasty

Our calculations are based on an average probability of passenger arrival.
What about the extreme days of operation? Analysis of the highs and the
lows of our model can yield both interesting and useful information as to the
robustness and resilience of the model.

To estimate for low traffic, we arbitrarily reduce the probabilities of arriving
to 70%, 60%, and 50% for small, medium, and large planes, instead of 85%, 80%,
and 75%. Our high extreme is, of course, 100%.

We find the numbers of machines corresponding to low, mean, and high
traffic to be:

Airport A: 15, 19, 24;
Airport B: 16, 21, 26.
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Model 2: Multi-Channel Queuing Model
Background Analysis

The arrival of airport passengers and baggage can be modeled by queuing
theory. Because the EDS machines are not at the ticket counters, two queues
form:

e People waiting to check in at the ticket counter. We assume that they arrive
at a uniform rate according to a Poisson process.

e People waiting to have their bags checked. To determine how the bags
arrive at each EDS machine, we analyze the layout of the airport and the
logistics of placing the machines in the building. Since each EDS machine
is approximately 20 ft long and 4 ft wide, there will not be sufficient space
to install the machines at the ticket counters [Domestic Flights Usage Guide
2003]. The most viable option is to install the machines in open lobby areas
throughout the airport, evenly spacing them so passengers find close EDS
machines regardless of where they enter the airport.

Airports have two options of dealing with baggage at the EDS machine.

e Require all passengers to remain with their baggage until it has passed
through the EDS. This method would result in longer queues, as people
would pile up in the queue along with baggage.

e Have the ticket agent stamp the luggage at check-in, allowing passengers
simply to drop off baggage at the EDS machine. Passengers could then leave
and allow the attendants to finish processing the bags. The baggage would
then form a queue of its own as bags piled up waiting to be put through the
machine.

We use the second option.

The baggage queue follows the same Poisson process as the queue for the
counter: As people leave the counter queue, they arrive in the baggage queue.
Baggage dropped off becomes the calling unit waiting in the queue and is
serviced according to how fast the EDS machines can handle baggage [Render
1997, 662]. The input process for the baggage queue is a first-come-first-serve
process.

Logistics of the Queue

To perform our queuing analysis, we first define parameters:
e )\ = average arrival rate (bags/h),
e L = average service rate at each channel (bags/h), and

e M = number of channels open (EDS machines).
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Average Arrival Rate

For this model, we examine each flight type separately. For each flight
type, we used Mathematica to generate a random number in the given range
of percentages of people that show up. We multiplied this value by the total
number of seats in that flight type. We then determine the total number of
passengers and the corresponding number of bags. From this we deduce the
average arrival rate A of bags per hour.

Mean Service Rate
The average service rate p at each channel depends on:

e the number of people staffing the machine and their experience with it,

e the protocol for dealing with flagged baggage (which slows down the pro-
cessing),

e locked bags (they will have to be cut open and searched),

e machine reliability (a breakdown will temporarily stop the queue and create
a backlog; according to the problem statement, each machine is operational
92% of the time).

We assume an average of 185 bags/h for an operating machine; taking into
account that a machine is operational 92% of the time, the mean service rate is
185 x .92 = 170.2 bags/h.

Number of Channels Open

We want to determine the number M of open channels that optimize the
system and allow all of the baggage to be checked in time to prevent any delays
in flight departures.

Advantages of the Queuing Model

A queuing model allows us to determine the average number of units in the
system at any given time and the average time that a unit spends in the waiting
line or being serviced. Perhaps the most important advantage is the fact that
we can also determine a utilization rate for the servers [Ecker 1988, 379]. From
this information, we can aim to increase utilization in order to decrease costs
and optimize our solution.

Airport A

For each day of simulation, we determine the total number of bags and
run them through our queue simulation in Mathematica. We also estimate the
number of servers needed to process all of the bags within a 2-hour period.
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After a few guess-and-check trials, we determined that M = 19 servers will be
adequate. Bags arrive at approximately A = 2,999 bags/hour, each bag spends
about 0.52 min in the scanner, and with 19 EDS scanners an average of 9 bags
are waiting in the queue at one time. On average, a bag waits 0.17 min in the
queue, and the total time to get all of the bags scanned is 1.85 h—well within
the limit of 2 h. The utilization rate is 93%, so each EDS machine is being used
almost the entire time.

Airport B

One run produces 6633 bags, for which 20 machines will do. Approximately
A = 3317 bags arrive per hour, and the average time spent scanning each bag is
0.95 min. The average number of bags waiting to be scanned is 33, while the
average waiting time is 0.59 min. The entire queue takes approximately 1.95 h
to run, with a utilization factor of 97%.

Comparison

The results from this model (19 machines at A, 20 at B, at costs of $20.9
million and $23.6 million) agree closely with those of the Hasty Model (19 and
21 machines, at $20.9 million and $22.7 million).

Model 3: Influx Simulation Model

In our previous models, we assumed a constant flow of arrivals. Realis-
tically, different numbers of people arrive at the airport every minute, either
dashing to the counter (if they are late) or walking patiently towards the EDS
machine (if they are on time). The main drawback in our queueing model
is that it handles arrivals as a whole and does not separate them into sepa-
rate flights and departure times. However, our Influx Simulation Model will
account for this by using a separate Poisson process, to simulate people arriv-
ing, for each flight. The flights will be analyzed individually, resulting in a
minute-by-minute distribution.

Arrival Rate

To account for peak traffic, we assume that 100% of passengers show up
for their flights, over the 1.25 h-period between 120 min and 45 min before
departure. Therefore, we estimate that a flight with 128 passengers will have
an arrival rate equal to the number of passengers divided by the time interval
in which those passengers arrive. For example, this flight will have an arrival
rate of 128/1.25 or approximately 102.4 passengers/h.



Airport Baggage Screening 117

Scanning Rate, Bag Rate

The scanning rate is 185 bags/h, and passengers average 1.4 bags/person.

The Influx Simulation Model

We split the peak hour into 10 six-minute intervals, to provide a decentbuffer
between flights and give people an opportunity to have a couple of minutes
leeway in case a flight is slightly delayed. We also chose this size interval to
provide a small number of flights departing in an interval, which helps reduce
possible waiting-line congestion. Our model can deal with multiple planes
in large airports; however, smaller airports would have to choose a different
process for scheduling, because they might not have the runway capacity to
support multiple flights.

At airport B, with 100% of passengers showing up for full flights, a total of
5781 passengers arrive. We divide them into 10 “platoons” of 578 each accord-
ing to the six-minute interval in which their plane departs. With approximately
the same number of people departing in each time interval, we even out the
congestion.

For a Poisson process, the following properties must hold [Lapin 1997, 229]:

e The number of events in one interval is independent from any other interval.
e The mean process rate A must remain constant at all times.

e The number of events in any interval of length ¢ is Poisson distributed with
mean At.

e As the interval size goes to zero, the probability of 2 or more occurrences in
an interval approaches 0.

Under these conditions, the probability of = arrivals in a single interval is

—At T
P@:):&, r=0,1,2,... .
xZ.

The 578 people in a platoon arrive over a 1.25 h-period. Figure 1 displays the
graph of a continuous approximation to the discrete probability mass function
of a Poisson process with arrival rate per minute of A\ = 578/(1.25 x 60) =
7.7 people/min.

We use the graph in Figure 1 to simulate the arrival of passengers. We
start by generating random ordered pairs. The first coordinate is a random
integer between 0 and 15, representing the number of passengers that arrive
in one minute, and the second coordinate is a random number between 0 and
0.2 (above the peak of the curve in the figure). We check each ordered pair
to determine whether or not it falls under the curve of the graph. If so, we
consider the pair to represent passengers arriving into the queue. We repeat
this process until we generate 75 points that fit under the curve. These 75 points
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Figure 1. Graph of continuous approximation to a Poisson distribution with arrival rate
A = 7.7 people/min. The peak of the curve is at approximately (7.5,0.15)

represent how passengers for departures in this six-minute interval arrived at
the airport in each minute of the 75 min in the 1.25 h arrival period. We also
put a stipulation in the program to hit the target number of people arriving,
i.e., 578 for airport B. For each airport, we generated a list of Poisson values
for each of the 10 different time intervals of departure times. We organize the
Poisson sequences in Figure 2.
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Figure 2. Results of 10 simulations.

The dark bars represent intervals of 75 min; each corresponds to arrivals for
a six-minute time interval of flight departures. The gray bars correspond to the
remaining 45 min when the plane is loading luggage and passengers.

We analyzed the minute-to-minute data in a spreadsheet, with a column for
each six-minute departure interval and a row for each minute from 0 down to
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180. The spreadsheet processes the rows from top to bottom. The spreadsheet
e sums arow to yield the number of passengers arriving in a particular minute,

e multiplies that total by the baggage rate (1.4 bags/passenger) to get the
number of arriving bags,

e adds those bags to any leftover from the previous minute to get Bag Total,
and

e subtracts Bag Total from the number of scanners times 3.083 (the scanner
rate in bags per minute).

If the difference is positive, the number of scanners was sufficient for that
minute. If the difference is negative, not all bags in the queue could be scanned
through; these bags are carried over to the next minute and the system begins
to get behind. As long as the machines can stay close to keeping up, flights will
not be delayed.

Passengers cannot arrive for their flights less than 45 min before departure.
However, baggage dropped off at the EDS can be processed and loaded on
the plane up to 15 min after this cutoff, since planes start loading passengers
approximately 30 min before departure. The extra 15-min leeway allows time
for the EDS machines to catch up and for baggage to get loaded.

From the column for the number of bags in the queue, we can determine
whether or not the machines keep up. If 15 min after passengers are no longer
allowed to board, the number of bags in the queue equals the total of the bags
arriving for flights departing after the current flights, then all of the bags for the
current flights have already been scanned. Therefore, when the flight leaves,
the scanner may still be behind but any backed up bags are from flights not yet
set to depart.

Figure 3 is a plot of every minute of the peak hours of airport A. The graph
accentuates the maximum population in the interval 54-75. The optimal num-
ber of scanners to use at airport A is 23, for a total cost of $25.3 million. Airport
B displays similar results, yielding 24 scanners at a cost of $25.9 million.

Developing a Flight Schedule

During the peak hour, 46 flights depart from airport A and 48 from airport B.
We need optimal schedules for all passengers to have their baggage scanned in
time for their departures.

Scheduling too many flights to depart around the same time leads to con-
gestion in the EDS queue; additional machines would be needed to handle
these extreme times but would be underutilized the rest of the day.

A hasty approach might be to schedule approximately the same number of
flights to leave at the same time. However, because the flights have different
numbers of passengers, there could still be massive congestion.
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Figure 3. Minute-by-minute passenger report at airport A.

Assumptions

o All passengers arrive in a Poisson process no more than 2 hours before, and
no less than 45 min before, their departure.

e Passengers arriving later than 45 min before the flight cannot board.

o All baggage must be checked before passengers are allowed to board the
plane.

e Passengers start boarding 30 min before gate departure.

e Inrelation to the previous two assumptions, all baggage for any given flight
must be scanned 30 min prior to departure.

e Checked baggage is scanned at a uniform rate.

e Carry-ons are not scanned by EDS.

Equally Distributed Passengers

One way to avoid congestion is to ensure that large numbers of people
are not required to arrive at the airport during the same time period. This
is accomplished in the model by splitting the peak hour into 10 six-minute
intervals, with the goal to space out the passengers equally in these 10 intervals.

We use the range of passengers per flight (given in the problem statement)
to calculate the number of passengers departing during the hour. Assuming
all flights are full and all passengers arrive for their flights, 5,396 passengers
arrive for airport A (540 per interval) and 5,781 for airport B (578 per interval).
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We distribute the flights into the 10 intervals so that approximately the
desired number of passengers depart in each interval. Our algorithm (as im-
plemented in a Mathematica program) works for any desired interval and pro-
vides a listing of which flights should be scheduled to depart in the same time
intervals. After arranging the flights into intervals, scheduling becomes a mat-
ter of determining the order of departures of the small number of flights in an
interval. Table 2 shows the schedule for airport A.

Table 2.
Flight schedule for airport A.

Flight interval
:00 :06 112 18 24 :30 :36 42 48 54

142 142 142 142 142 142 194 194 215 350
Specific | 142 142 142 142 142 142 142 194 194 194

flight 142 142 142 142 85 128 142 142 128
capacity 46 46 46 46 85 128 34
34 34 34 34 85 34

34 34 34 142

Totals 540 540 540 540 539 540 546 530 537 544

During peak hours, the rate of passengers coming in continues to grow
until the middle of the peak period. If delays were to occur during this time,
large flights mightbe delayed, which could eventually also delay smaller flights
because of runway congestion. To avoid this problem, we place the time periods
that contain the larger flights near the end of our flight interval. This allows
the passengers for the smaller planes to get on their planes and depart on time.
If there is a delay or unexpected congestion towards the end of the peak hour,
it mainly affects just the two larger flights.

Recommendations

Install 23 EDS machines in airport A and 24 machines in airport B. With these
numbers, during the peak hours 100% baggage screening can be accom-
plished without delaying any departures while also maintaining high uti-
lization rates.

Implement an optimal form of flight scheduling by distributing passengers
evenly among a set number of time intervals. This type of a schedule will
reduce passenger congestion, help prevent takeoff delays, and reduce the
additional congestion if a plane gets delayed.
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Device Technology

New technologies are accurate enough to warrant research to perfect their
technologies. X-ray diffraction would equal the accuracy of EDS, and increasing
research intensity should prove useful, and quadrupole resonance is specialized
in detecting potentially explosive materials such as phosphorous.

Cost

Currently, the EDS can scan 3.1 bags per minute. If we could up the rate to
4 bags per minute, the number of required scanners will decrease by at least
one. The new technologies would obviously be expensive, but a decrease of
even one scanner could decrease the total cost by over $1 million.
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