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Summary
Our design team was tasked with developing optimization and simulation

models to:

• help the airlines optimally schedule all flight departures within peak hours
at two large airports in the Midwest; and

• predict the number of explosives detection systems (EDSs) and explosives
trace detection (ETD) machines required at the two airports to examine all
passengers’ bags departing during a peak hour.

Our optimization model is linked with a genetic algorithm to schedule flight de-
partures optimally for each airport. We use Monte Carlo simulation to generate
random data sets for use in a transient stochastic simulation model developed
to predict EDS and ETD needs.

The optimization model yields near-optimal flight schedules for peak hours
at the two airports. These flight schedules, along with various probabilities
associated with passenger arrival, machine processing speeds, and flight seat
distributions, were used by the simulation model to predict the number of EDS
and ETD machines required: Airport A requires 30 EDS and 12 ETD machines,
and airport B requires 34 EDS and 13 ETD machines. More machines would be
needed to accommodate multiple peak hours in succession or increased travel
in peak seasons.
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Review of Literature

Queueing Theory
A queueing model is essentially concerned with the input process and ser-

vice mechanism of the system [Takacs 1962]. The input process at an airport is a
combination of the time when passengers arrive before their departure and the
number of bags that a passenger checks. The service mechanism is “first-come,
first-served,” so the order of bags checked is conserved through the screening
process.

Markov Chains
A Markov chain is concerned with discrete time and has the property that “if

the present state of the system is known, the future of the system is independent
of its past” [Kulkarni 1995]. The state of the system at time (n + 1) depends on
the system at time n, which depends on the system at time (n − 1), and so on
until at time zero, the starting point of the system.

Arrival Distributions
Queueing models allow the input process to follow any probabilistic dis-

tribution. However, many examples in texts describe the arrival of people as a
Poisson process [Takacs 1962; Devore 1995]. The assumption that people arrive
following a Poisson process is widely used [Heyman and Sobel 1982]. When
the arrival density parameter of the Poisson process is large, the distribution is
approximately normal [Devore 1995].

Simulation Models
Simulation queueing models can show the behavior of systems over time

[Solomon 1983]. They have been used in the airport industry recently to deter-
mine the number of instruments and staff for effective security [Crites 2003].
Simulation models can also take into account the variability of stochastic events,
such as passenger arrival distributions and security-screening device opera-
tional reliability.

Genetic Algorithms
A genetic algorithm (GA), through its stochastic nature, provides a robust

and efficient method for solving difficult optimization problems with large non-
linear search spaces; it generally finds extremely good solutions since it is able
to simultaneously search various points of the solution space [Dandy 2001].
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Based on the mechanics of natural selection and genetics, GAs randomly gen-
erate solutions which are checked for fitness and then utilize genetic processes
such as selection, crossover, and mutation to combine the most fit solutions
into a new population of solutions. In this manner, highly fit and desirable
traits are passed from one generation to the next, supplanting unfit traits in the
process. The GA iteratively repeats this process over a number of generations
until a near global optimum is achieved.

Methodology and Application
To predict the number of EDS and ETD machines to deploy, we must un-

derstand the flow of passengers into the airport. To do so, we develop flight
schedules discretizing the peak hour into time steps. Flight scheduling can
then be achieved using an optimization model, whose objective is to minimize
the variance between the total numbers of passengers departing in each time
step while meeting the constraints of departing the correct number of flights of
each type within the peak hour.

Scheduling Model
We develop an optimization model to determine flight schedules. We dis-

cretize the peak hour into 20 time steps, thereby scheduling flights in 3-min
intervals. The configuration and development of the model was tailored to a
genetic algorithm software called Generator [New Light Industries 2001]. The
multiobjective function, which minimizes the variance between the numbers
of passengers departing in each time step and also assigns the correct number
of flights of each flight type during the peak hour, is of the form

min z =
∑ (xi − x̄)2

n − 1
+

∑
Pj(yj − bj),

where

xi = the number of passengers departing in time step i,

x̄ = the average number of passengers departing per time step,

n = the total number of time steps in the peak hour,

Pj = the penalty associated with not meeting constraint for flight type j,

yj = the number of flights being scheduled for flight type j, and

bj = actual number of flights leaving airport of flight type j.
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The genetic algorithm and optimization model provide near-optimal flight
schedules for both airports A and B, so that approximately the same number of
passengers depart in any given time interval. The airport security simulation
model incorporates the optimization model’s output (the flight schedule) to
predict the number of EDS and ETD machines required.

Simulation Model
The simulation model requires various data sets (randomly generated via

random number generator) to simulate peak hours at each airport:

• normally distributed passenger arrival times, varying from 45 to 120 min
prior to departure of peak hour flights;

• normally distributed random variable consisting of the number of filled seats
on each flight leaving in the peak hour;

• normally distributed random variable consisting of the EDS and ETD in-
stantaneous machine processing rates;

• uniformly distributed discrete random variable that describes the number
of checked bags per passenger;

• uniformly distributed discrete random variable that is used to determine
which bags are selected for additional ETD screening.

The simulation model accesses a vector containing the flight schedule to
determine the number of each type of flight leaving per time step during the
peak hour. It then accesses random variables associated with the filled seat
distribution for each flight and sums these values:

Pij =
Schedi∑
k=1

FSi,

where

Pij = number of passengers on all flights of type i leaving in time step j,

Schedi = the number of flights of flight type i leaving in time step j,

FS = filled seat random variable,

i = flight type, and

j = time step.
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The total number of passengers departing during the time step is then cal-
culated by summing the number of passengers on each flight type during that
time period:

PTOT,j =
∑

i

Pij ,

where

P = number of passengers departing in time step,

i = flight type, and

j = time step.

The simulation model then randomly assigns passenger arrival times to all
passengers leaving during the peak hour. Assuming that 99.7% of passengers
arrive between 45 and 120 min before their departure, the approximate normal
distribution of arrival of passengers has a mean of 82.5 min before departure
time and a standard deviation of 12.5 min.

Each passenger is assigned a uniformly distributed discrete random vari-
able between 1 and 5. A passenger who receives a 1 is checking zero bags, a
passenger who receives a 2 is carrying one bag, and the rest are carrying two
bags. The result is a random bag rate at each time step.

For each time step, normally distributed random variables are generated to
represent the EDS machine processing speed; this is multiplied by the number
of machines to predict the number of bags processed. If that number is greater
than the number of bags arriving during that time step, then the bags are
processed and the residual is zero bags. Otherwise, the residual is calculated
and added to the number of bags arriving in the following time period.

The residual variable represents the number of bags queued by the security
machines. A maximum allowable number of bags queued is established using
the number of machines, the mean EDS bag-processing speed, and the maxi-
mum time allowed for processing a bag. A maximum time of 15 min was used
in the simulation. If the number of bags queued ever exceeds the maximum
allowable bags queued, a flight could be delayed.

The simulation model was run with ten data sets to produce the effects of ten
independent peak hours, and then run in series to simulate ten consecutive peak
hours. In the independent peak-hour simulation, the number of bags queued
is initially set to zero, assuming that peak hours are scheduled between periods
of zero flight departures. In the multiple peak-hour simulation, the passenger
and bag arrival phenomena are assumed to follow a Markov process.

ETD Simulation
The independent peak hour simulation was modified to incorporate ETD

machines; 20% of the bags processed by the EDSs are flagged for ETD scrutiny.
The ETD machine processing speeds, bags queueing, and maximum bags
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queued are all calculated as described earlier for EDS machines. A maximum
allowable queue time of 9 min was used; this implies that bags have 21 min to
reach their flights after ETD scanning.

We had hoped to develop the Markov model to incorporate the ETD ma-
chines, but time constraints and coding requirements proved prohibitive.

Model Assumptions
• Normal distribution of:

– passenger arrival time before departure,
– seats occupied on a plane (unless all full planes were specifically simu-

lated), and
– detection systems processing rates.

• Bags are processed on a first-come first-served basis.

• EDSs are accessible to all bag check-in locations.

• People who arrive less than 45 min before their plane departure time are
turned away and their baggage is not checked.

• For people who arrive more than 120 min before their departure, their bags
are not checked until exactly 120 min before their departure.

• The time needed to transfer EDS-screened bags to planes is less than 30 min.

• The time needed to transfer ETD-screened bags to planes is less than 21 min.

• The optimally scheduled time steps within the peak hour are interchange-
able, and reorganizing these time steps will not change the outcome of the
simulation.

• If the number of bags received during a time step is less than the processing
rate for that time period, all of those bags are processed during that time
period.

• Flight cancellation is not considered in this simulation; this is justified by the
fact that some baggage destined for a canceled flight will have already been
checked. This assumption also adds a conservative element.

Results and Discussion

Flight Schedules
Using the genetic algorithm, we determined optimal flight schedules for

airports A and B. [EDITOR’S NOTE: We omit the details of the schedules.]
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Number of Machines
We used the optimization and simulation models to determine the number

of EDS and ETD machines required at airports A and B (see Table 1).

Table 1.

Model prediction summary for EDS and ETD machines.

Airport Flight Status Machines
Required

A 100% full 37 15
Varying % full 30 12

B 100% full 40 15
Varying % full 34 32

Passenger Arrivals
Simulations of the various peak-hour data sets showed slight variations in

passenger and checked baggage arrival distributions. Figure 1 shows super-
imposed passenger arrival distributions at airport A for all 10 peak hour data
sets used in the simulation.

Figure 1. Variations in people arrival distributions at airport A for 10 random data sets.

The peak hour begins at 11:00 a.m., and passengers arrive between 45 and
120 min before their flight according to an approximately normal distribution.

The same normal passenger arrival distribution was observed for airport B.
Passenger arrival rates were also normally distributed for airport B, with a
slightly higher mean and standard deviation, which explains assigning more
machines to airport B.
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The simulation model uses passenger and bag arrival probabilities, and
EDS and ETD machine processing rate probabilities, to simulate the opera-
tional performance of each machine type under peak-hour passenger flows at
both airports. Figure 2 shows some operational performance characteristics of
airport A’s EDS machines for all ten data sets.

Figure 2. Variability of model response to ten data sets with respect to bag throughput and bags
queued by EDS machines in airport A.

EDS BAG Throughput
EDS bag throughput is the number of bags examined and passed by all EDS

machines in one time step. The bag throughput increases steadily as more pas-
sengers begin to arrive for peak-hour flights, until the machine’s operational
speed is overcome, at which point bags begin to queue up awaiting exami-
nation. The number of bags queued increases steadily as passenger and bag
arrivals continue to exceed the processing rate of the EDS machines, but the
queue never exceeds the upper limit, denoted by the 15-, 16-, and 18-minute
lines Figure 2. These lines correspond to the maximum allowable bags queued
so that all arrive on time to their planes. When more time is allowed for bag
queueing, then the total number of bags allowed to queue increases, apparent
in the stepwise increases shown in the graph. Therefore, by requiring passen-
gers to arrive slightly earlier than the current 45 min deadline, the number of
EDS and ETD machines required could be reduced.

The simulation model also generates system characteristics for the ETD
machines at airport A. These results are shown in Figure 3.
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Figure 3. Bag throughput and bags queued by ETD machines in airport A.

The simulation model also predicted the number of EDS and ETD machines
required at airport B, with similar results. Since all queued bags are processed
within the 15-min allowed time period, no delays will occur with this system,
assuming bags can arrive to their planes within 30 min. Bags passing through
ETD examination have only 21 min to arrive to their planes.

If time is an issue, passengers could be required to arrive earlier for flights,
or additional personnel could be employed to ensure ETD examined bags arrive
to their respective planes without delay.

Multiple Peak Hours
In addition to simulating single peak-hour events at both airports A and B,

we evaluated the effects of combining 10 peak-hour events in succession. This
simulation is representative of days when air traffic does not slow down but
remains heavy throughout the day. Since passenger arrivals do not slow down,
as in the single peak-hour simulation, we expect to need more machines. Our
simulation of multiple peak hours predicts only the number of EDS machines
required and does not consider ETD machines. Table 2 shows the results.

The EDS system performance for multiple peak hours, in which planes’
seating capacities vary, is shown in Figure 4.

The bag arrival distribution seems to approach a steady-state value that is
maintained throughout most of the day. Although the queued bags steadily
increase throughout the day, none of these bags exceed the maximum allowable
time in queue. Similar results were also obtained for airport B.
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Table 2.

Model results for EDS machines for 10 consecutive peak hours.

Airport Flight Status EDS Machines
Required

A 100% full 38
Varying % full 31

B 100% full 43
Varying % full 35

Figure 4. Bag arrival and queued bag distributions over 10 peak hour period in airport A.

Conclusions and Recommendations
• Our optimization model, in conjunction with a genetic algorithm, proved

invaluable in developing optimal flight schedules for airports.

• Increasing the number of successive peak hours requires an increase in the
number of EDS machines required to prevent flight delays.

• Our simulation model analyzes tradeoffs between changes in technology
and their effects on airport security.

• Both EDS and ETD technologies should be employed to provide improved
airport security.

• Our optimization and simulation models could easily be applied to the re-
maining 193 airports in the Midwest region and elsewhere.
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