It's All About the Bottom Line 115

It’s All About the Bottom Line

Eli Bogart
Cal Pierog
Lori Thomas

Harvey Mudd College
Claremont, CA

Advisor: Hank Krieger

Summary

A brand-new university needs to balance the cost of information technology
security measures with the potential cost of attacks on its systems. We model the
associated risks and costs, arriving at an equation that measures the total cost
of a security configuration and then developing two algorithms that minimize
the cost. Both algorithms give a total cost just over half the cost of no security
and just over 1.5 times the theoretical minimum cost.

Our model’slack of assumptions about the structure of the university allows
the model to be used with any kind of organization, requiring only a set of
opportunity costs and statistics about the size of the organization. Our model
can even suggest upgrades to existing security systems by changing the costs
associated with current security measures.

We consider two extreme cases that bound our solution area and also test
the sensitivity of our results by varying the parameters to see the impact on
the security configurations chosen by the algorithms. In addition, we analyze
equal-cost configurations that lead to different levels of risk.

Introduction

We develop a model to evaluate and optimize choices of security systems
for a new university, which could easily be extended to another organization.

e We make assumptions to simplify the problem.

e We present our method for calculating the cost of a combination of security
measures.

The UMAP Journal 25 (2) (2004) 115-128. (©Copyright 2004 by COMAP, Inc. Allrights reserved.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice. Abstracting with credit is permitted, but copyrights
for components of this work owned by others than COMAP must be honored. To copy otherwise,
to republish, to post on servers, or to redistribute to lists requires prior permission from COMAP.



116 ~ The UMAP Journal 25.2 (2004)

e We develop a reduced-search-space brute-force algorithm and an iterative
algorithm that use the cost formula to find an optimal security configuration.

e We report and analyze the results of these algorithms.

e We discuss the extensibility and flexibility of our approach, with particu-
lar attention to how it could be applied to an organization of considerably
different priorities, such as a major commercial Internet search engine.

e We discuss improvements and further developments.

Assumptions

A university’s computer systems must support activities ranging from word-
processing to scientific simulation, from Web-hosting to accounting, for tens of
thousands of users on a day-to-day basis. Our client may have as many as
35,000 networked computers [Levine et al. 2003], differing in their operating
systems, configurations and primary purposes, and extensively organized into
subnetworks and departments. This scope and complexity, combined with the
ever-increasing number and diversity of threats to information security, and the
wide variety of countermeasures available to combat those threats, make pre-
cise optimization of the school’s information technology security a challenge.
To simplify this process, we make several assumptions:

o All security measures are applied universally. We assume that a single,
uniform package of defensive measures and policies is implemented for
every computer on campus (although our model supports the ability to
individually analyze subsystems). This assumption allows us to disregard
any security-related interactions between differently-protected subsystems.

e Atmostone security measure of each type. Two security measures designed
to protect against the same category of threat are highly likely to have over-
lapping capabilities. If we have two spam filtering programs, we would
expect spam email detected by one program to be be flagged by the other, so
that it is unlikely that operating both is profitable. On the other hand, this
sort of redundancy could be desirable as a protection against system failure.

e No redundancy or synergy among security measures of different types.
The presence or absence of a security measure or policy of one type cannot
impact the effectiveness of a security measure or policy of any other type.
In practice, system administrators could use the information provided by a
network intrusion detection system to adjust the configuration of a firewall,
improving its performance; but in the absence of any relevant data, ignoring
these effects seems to be a relatively benign simplification of the problem.

e Five-year time frame. The procurement and installation of a security mea-
sure is a one-time cost, while the associated maintenance costs and security



It’s All About the Bottom Line 117

benefits accumulate over time. Given the rapidly changing nature of secu-
rity threats and computer technologies, it is reasonable to compare the net
costs of security measures over five years.

o Costs of security measures are independent. The prices of different security
products are independent, and we neglect any financial effects of installing
multiple products at one time—simply put, there is no bulk discount. In
this respect, our model is overly pessimistic; apart from any discounts, bulk
installation would also be faster and cheaper. However, this assumption
allows us our model to encompass systems with pre-existing components.

Cost Equation

Any analysis of risk requires a way to compare two security configurations
and choose the better one. Our model accomplishes this by measuring the
dollar amount that a security system will save over the next five years. This
dollar amount has two components: attack costs and sunk costs. Attack costs
accrue from information attack and the resulting litigation, data loss, loss of
consumer confidence, and so on. Sunk cost is the price of implementing the
security system plus the cost of maintaining it over five years. Additionally,
the sunk cost includes the dollar estimate of the gain or loss in productivity
caused by the security system. The sum of these two costs is total cost.

Attack Cost

To measure the cost of an attack, we could lump all costs together and
assume that all security measures reduce that total cost. To do so would be
overly simplistic, since three security measures that all reduce the same aspect
of cost are not necessarily as effective as three that reduce different components.

We break the total risk into three components: information confidentiality,
data integrity, and system availability [Levine et al. 2003]. The relative impor-
tance of the indices for confidentiality, integrity, and availability (C, I, and A)
for a given company will drive its choices in security measures.

Table 1 of the problem statement allows us to break down the baseline
cost (of no security whatever) into the three risk categories: BaseCostC = $
4.3 million, BaseCostl = $ 3.585 million, and BaseCostA = $ 1.045 million,
corresponding to confidentiality, integrity, and availability.

Each security device or policy affects C, I, and A in terms of percentage
changes dC, dI, and dA from the initial values of 1. Positive changes reflect
higher levels of confidentiality, integrity, and availability, so costs from attacks
should decrease as the indices increase. We offer the following equation for the



118  The UMAP Journal 25.2 (2004)

cost of an attack given n categories of security features and policies:

BaseCostC BaseCostl BaseCostA
AttackCost = years X

— + —= + ——=
[/ +dC)  TL=r(+dh)  [T=0 (1 +dAy)

With no security features, the indicated products are all 1 and we get the baseline
attack costs.

Sunk Cost

There are two aspects to sunk costs: money spent on security measures
and change in productivity. The money spent includes the one-time cost of
purchasing or implementing the measure or policy, maintaining it, and train-
ing individuals in its use. This amount can depend on the number of users,
computers, and IT staff trained to work with the measure. We divide IT staff
into two categories, help-desk workers and system administrators. The cost
of training IT staff for each product is assigned to the appropriate category of
staff. This provides a bit more realism for the model, as help-desk workers in
general do not require as much training as system administrators.

The second aspect of the sunk cost is the change in productivity, P, which
works much like the C, I, and A indexes used to determine attack costs. In-
creases in productivity should lead to decreases in the sunk costs, since in-
creased productivity lessens the cost of the security feature, and the increase
in productivity depends only on the existence of the security features, not on
attacks. To calculate the change in productivity from the baseline, we subtract
the base productivity value, getting

SunkCost = Z(procureCost + maintCost + trainCost)
i=1

BaseValueP

[, (1 + dP)

+ years X ( — BaseValueP)

The BaseV alueP is the product of the number of users and the productivity
per user, obtained by estimating the number of hours per year that the average
user spends using the university’s IT services and the replacement cost of those
services (as estimated by our team).We arrived at BaseV alueP = $12 million.
(Later, we analyze the sensitivity of the model to this value.)

The costs to purchase or implement and maintain security depends on the
numbers of computers, users, and IT staff. Table 1lists the values that we chose
to simulate the university.



It's All About the Bottom Line 119

Table 1.
Fixed input parameters for the model.

Variable Value  Variable Value
Computers 17900 BaseCostC $4.3 million
System administrators 16 BaseCostl $3.585 million
Help-desk staff 55 BaseCostA $1.045 million
Users 17,000  Productivity per user 365
Years 5

Total Cost

Combining our two equations, we get

n

TotalCost = Z(procureCost + maintCost + trainCost)
i=1
BaseCostC n BaseCostl n BaseCostA
[[=r(+dC)  TLZi(1+dh)  TTZ0(1+dAy)
BaseValueP
[Tim, (1 +dP)

+ years X (

— BaseValueP>

Input

The C, I, and A multipliers and prices for each security measure are obtained
from Enclosures A and B of the problem statement. We reduce the values for
P by a factor of 10 to reflect reasonable changes in productivity due to any
single product. We also ensure that each security category has a null option,
with a cost of zero and values for C, I, A and P of 1. We create two categories
of IT staff and split training costs for system administrators between the two
categories.

Models and Approaches

We explore several approaches to optimizing the university’s security con-
figuration using the cost formula above.

Brute-Force Computation

Calculating the net cost of every combination of security features allowed
by our assumptions and picking the best would be guaranteed to find the best
security configuration within the parameters of our model. However, eval-
uation of the cost formula would be computationally intensive. If j; security



120  The UMAP Journal 25.2 (2004)

features (including the null feature) are available in the ith category, one feature
can be chosen from each category in j; x ja X --- X j, distinct ways. Once a
set of features has been chosen, calculating the resulting effects on confiden-
tiality, integrity, availability, and productivity requires 4(n — 1) multiplications.
Comparison of all possible security configurations thus requires

n

4(” - 1) H]n

=1

multiplications. For the security features available to the university, this would
be 4.77 x 10'2 multiplications.

While many of these multiplications are repeated many times, allowing
a good algorithm to reduce the total number of calculations drastically, the
brute-force approach is nonetheless too numerically intensive to produce re-
sults within a reasonable time frame.

Refined Brute Force

Reducing the number of security features under consideration could sub-
stantially reduce the number of calculations required for a brute-force approach.
To do this, we calculate the net cost of each security feature in isolation. If a
feature, installed alone, results in more costs due to procurement, maintenance,
and lost productivity than savings due to increased security, we assume that the
feature will not become profitable as part of the optimal security configuration.

This assumption is plausible but not guaranteed. A security policy such
as allowing wireless networking, which allows a great increase in productiv-
ity at the expense of confidentiality, integrity and availability, might become
profitable in combination with a (hypothetical) inexpensive combination of se-
curity measures that increase the C, I, and A indexes more than enough to
compensate. But most of the security measures that we are considering have
small effects on productivity; their net cost is determined primarily by their
installation and maintenance costs and their security benefits, which are pro-
portional to C, I, and A. Such measures, if unprofitable on their own, are
almost certain to become even less profitable in combination with other mea-
sures that reduce C, I, and A. We decided that such security features are safe
to neglect. This eliminates 34 of 83 technological measures and settles 4 of the
policy choices studied—many of which would have cost well over $1 million
over five years—reducing the number of necessary multiplications to 600,000.

Cherry-Picking

As an alternative to reducing the size of the search space, we created an it-
erative algorithm to construct a security configuration. Starting from an unde-
fended network, we repeatedly add the most profitable security feature avail-
able until one technological measure (possibly null) from each category had



It's All About the Bottom Line 121

been acquired and all policy choices had been made. In addition to producing
an effective overall security system, this process also provides an outline for
acquiring security features piecewise, as could be required on a limited budget.

Results
Model Results

We ran both the Refined Brute Force and Cherry-Picking algorithms on
the data set provided in the problem statement. The resulting total costs can
be compared to each other but are not useful without a frame of reference.
To provide that sort of framework, we ran both algorithms again, this time
minimizing only one component of the cost, either attack cost or sunk cost. In
both cases, both algorithms produced exactly the same security configuration
and total cost, thereby giving lower bounds on the attack cost and the sunk
cost for with the data set. We illustrate tradeoffs between attack costs and sunk
costs in Figure 1. Lines of slope —1 consist of points with the same total cost.
Table 2 shows the security configurations for points A4, B, C, and D.

sunk Cost Vs, Attack Cost

n

26 1
ﬂ*

ra
=

Aurk Cost (it Millions)
[

I:I T T T T T
n 7 10 15 20 2R a0

Attack Cost (it millions)

Figure 1. Sunk costs vs. attack costs. Diagonal lines are made up of points with equal cost.
Point A which minimizes the cost of an attack regardless of the sunk cost. Point B is chosen by
the Cherry-Picking algorithm. Point C' is chosen by the Refined Brute Force algorithm. Point D
minimizes the sunk cost, regardless of the cost of an attack.



122 The UMAP Journal 25.2 (2004)

No configuration can have an attack cost lower than that of point A nor sunk
costs lower than that of point D. The vertical line through A and the horizontal
line through D intersect at the theoretical lowest total cost—a combination of
security features that costs almost nothing and reduces the cost of attack to

almost nothing.

Table 2.

Products and policies for points A, B, C, and D in Figure 1.

category A B C D
Host Firewall Intelli-Scan Lava Barrior none
Net Firewall EnterpriseLava EnterpriseLava  none none
Host Anti-Virus BugKiller Anti-V Anti-V none
Net Anti-Virus Enterprise Stopper ~ System Splatter ~ System Splatter  none
Net IDS Network Eye Watcher Watcher none
Net Spam Filter Spam Stopper Spam Stopper SpamStopper none
Net Vulnerability Scan  none none none none
Data Redundancy none none none none
Service Redundancy none none none none
Password Policy Strong Strong Strong Strong
Security Audit? Formal Formal Formal none
Wireless? none none none none
Removable Media? none none none none
Personal Use? Restricted Restricted Restricted Restricted
User Training? Required Required Required none
IT Staff Training? Required none none none

Deviation from Expected Attack Rates

In Figure 1, points B and C fall almost on the same line, so their total
costs are almost equal. We would like to be able to distinguish between two
points with similar total costs but different divisions of this total between sunk
and attack costs. One way to do so is to consider what happens if the rate of
successful attacks is different than expected.

e Suppose that the government cracks down on computer crime and only half
as many attackers manage to break into the university networks; costs due
to attacks will be half as much as before, benefitting those who spent more

on attack costs than sunk costs.

e On the other hand, suppose that the number of attackers is more than antici-
pated. In this case, the amount spent on attacks is much larger than expected,
so those who spent more on attack costs than sunk costs end up spending
more than they had planned.

Figure 2 illustrates this point. A subscript 1 corresponds to cutting the rate of
attack in half, a 2 to expected attack rates, and a 3 to doubling the attack rate.



It's All About the Bottom Line 123

Atntack Costvs Sunk Cost- Varied Attack Rates

30

Sunk Cost (it mdllions)
[
=

—_
=
1

1] 10 20 an 40 a0 60

Attack Cost (i millions)

Figure 2. Points A, B, C and D correspond to minimizing attack costs, the total cost using the
Cherry-Picking algorithm, the total cost using the Refined Brute Force algorithm and the sunk
costs, respectively. Subscript 1 corresponds to half as much cost from attacks as expected, 2 to the
expected cost from attacks, and 3 to twice the cost expected.

Among the points with halved attack rate, C; has the lowest total cost.
However, when the attack rate is increased to twice the expected value, B;
overtakes Cj3, indicating that although the Brute Force algorithm (C) is best for
low attack rates, the Cherry Picking algorithm (B) surpasses it when the attack
rate increases.

Variation of Parameters

To test the robustness of our results, we individually varied BaseCostC,
BaseCostl, BaseCostA and BaseValueP by a factor of 2 and by a factor of
1/2. These variations had a small effect on the security configurations chosen
by the Refined Brute Force algorithm. The choice of host-based firewall varied
the most in response to changes in values, with five of the nine configurations
choosing Barrior, one choosing Watertight, and three choosing Lava. The next
most varied was the choice of network-based firewall, with six choosing none
and three choosing Enterprise Lava. Two of the configurations had single
choices that differed from the other eight. These results suggest that our model
is only somewhat sensitive to variations in these parameters with the restricted
data set used by the Refined Brute Force algorithm.

We varied the same parameters by the same factors using the Cherry-Picking



124 The UMAP Journal 25.2 (2004)

algorithm. Though the actual security configuration changed less than with the
Refined Brute Force algorithm, the order in which each security feature was
chosen varied from the norm in all but one case. Even when the order differed,
it usually did not do so until the seventh or eighth purchase out of 16.

The two algorithms responded similarly to variation in the parameters ex-
cept in the firewall categories, where there were consistent differences. The
Refined Brute Force algorithm chose Barrior and no network-based firewall,
where the Cherry-Picking algorithm chose Lava and Enterprise Lava in 10 in-
stances out of 18. Thus, the two algorithms give generally consistent results
and the inconsistencies are systematic to some degree.

Extensibility

The model makes no assumptions about the kind of organization under
analysis and thus is highly adaptable and can be used to analyze any company
or organization’s computing resources. Our model simply requires three pieces
of data to do its computations:

o A list of the currently available technologies and their expected impacts on
confidentiality, integrity, availability, and productivity.

e The number of computers, users, and system administrators that the system
is expected to support.

e How much the organization currently spends on confidentiality, integrity,
and availability, as well as the estimated value of each user’s productivity.

Since these parameters are not specific to any type of company or organiza-
tion, any organization can be modeled, from universities to on-line banking to
Internet search engines (see below).

Subsystems

What’s more, our model can also analyze the security tradeoff of applying
security features to only a subset of a larger system, such as buying a firewall
for only one subnet on a university campus.

Using this method of breaking down a larger system into smaller subsys-
tems, we can more effectively secure each subsystem, because we can choose
a completely custom set of security measures for each subsystem individually.
This means that each part of the organization’s computing facilities can im-
plement only the security that is most effective rather than following global
security policies that only slightly benefit the particular subsystem, thereby
not only increasing the overall security of the system but also substantially
decreasing the cost of the security system.



It's All About the Bottom Line 125

Our model can also be utilized if the organization later decides to merge
two subsystems or divide an existing system into several parts, even after the
initial security system is in place.

New Technology

The constantly changing face of security makes periodic updating essential.
Fortunately, our model allows analysis of security systems already in place, so
it can re-evaluate an existing security system to see if it can be updated. Systems
already in place receive an implementation cost of zero. Due to their presumed
age, their effective confidentially, integrity, and availability must be recalibrated
in light of emerging technologies.

Once we enter the old systems into the database, we use our analysis to de-
termine if they are still financially viable. If maintenance costs exceed estimated
utility, the systems’ use should be discontinued. The analysis will additionally
suggest upgrades or additional security systems that would be profitable to
install.

Implementation Costs

However, projected income is not the only concern. Companies must also
consider their limited cash on hand. For example, a security system that would
save money over the next five years might be infeasible because the company
does not currently possess enough financial reserves to cover the initial costs.

The Cherry-Picking Algorithm deftly addresses this concern, picking the
most profitable systems first before others. In this manner, the company can
most effectively allocate its limited financial reserves to the systems that will
effect the largest profit increases. They need only start picking at the top of the
list and working their way down until their security budget is expended.

Web Search Engines

The priorities of web search engines are very different from those of uni-
versities. Therefore a search engine’s opportunity costs (as presented in the
problem statement’s Table 1) are quite differently distributed.

Consumer Confidence

Consumer confidence is of paramount importance to Web search engines.
Nearly all search engines rely on advertising as their primary source of income.
However, publicists are interested in advertising only with popular search en-
gines, where the most users will see their ad. The financial situation of a search
engine is intimately tied to its consumer confidence (usage), so it follows that a



126 The UMAP Journal 25.2 (2004)

search engine’s opportunity costs are primarily proportional to the consumer
confidence category.

Service Reconstruction

Service reconstruction is closely related to consumer confidence. After all,
a search engine can be viewed as a company that provides a solitary service:
searching the Web. If a search engine is unable to provide this service to its users
because of a security breach, it will lose consumer confidence: The longer the
outage, the worse its effects. Thus, service reconstruction is another consumer
confidence category in which search engines are interested.

Direct Revenue Loss

Although especially vulnerable to attack that damages consumer confi-
dence, such as a denial-of-service attack, search engines are not susceptible
to financial attacks such as a salami attack. The search engines’ relative immu-
nity to such attacks stems from the lack of financial transactions that involve
the Website. Simply put, search engines do not have any sensitive data such
as credit-card and bank-account numbers. This means that there is really no
way for an attacker to steal money from the search engine, rendering the direct
revenue loss category rather inconsequential.

Proprietary Data Loss

Not only do search engines not store sensitive financial data, they do not
store any private data at all. The purpose of a search engine is to allow people
to quickly find data that is available to everyone. Therefore, all the information
cached by a search engine is freely available to anyone with an Internet con-
nection, meaning that search engines have very little proprietary data to lose.
Attackers are therefore unlikely to cause proprietary data loss.

Data Reconstruction

This complete lack of proprietary data also helps the search engines with
regard to data reconstruction. Since all the information housed by a search en-
gine is freely available, attackers are unlikely to attempt to corrupt or sabotage
the data. Moreover, if any data is corrupted, it can be restored by downloading
a fresh copy from the Internet. From a search engine’s point of view, the entire
Internet is a backup copy.



It's All About the Bottom Line 127

Litigation

The majority of a search engine’s users pay no fee, and so have little grounds
for litigation since the search engine has no legal obligations to them.

More problematic from a legal perspective are the advertisers. The search
engine is contracted by the advertiser to display an ad in a certain manner. If the
search engine is unable to do so because of the nefarious work of an attacker,
then the advertisers have grounds for lawsuit. However, the situations that
would earn the ire of advertisers are exactly the same ones that would lower
consumer confidence, that is, the site going offline. Therefore, while some
attention must be paid to legal ramifications, the defensive measures involved
would be the same as the consumer confidence category.

Directions of Further Work

The first priority of future work is to remove our assumption that one set of
security features will be applied to every computer system within the organi-
zation. At present, entire categories of features (data and system redundancy)
are excluded from configuration because they are far too expensive to imple-
ment campus-wide. In fact, those features are not intended to be applied on
such a large scale but only to critical systems and services. Our model is en-
tirely capable of handling the implementation of different security features on
subsets of an organization’s computer systems; doing so would require only a
breakdown of the university’s computing needs into subnetworks, each with
its own productivity and costs associated with confidentiality, integrity, and
availability.

Another valuable refinement of this model would be in the method for
assessing BaseCostC, BaseCostl, BaseCostA and BaseV alueP for different
components of the university or other organization. Hsiao [1979] assigns to
each component of the IT network not only a value but also a probability of
attack; the product of the two gives the expected cost of attack for that compo-
nent. This cost could be broken down into costs due to C, I, and A, allowing us
to consider each feature individually and its ideal security configuration. We
could then go a step further and figure out how to group different components
to share security features or policies in a cost-effective manner.

The value of our results would also be enhanced by relaxing our assump-
tions regarding redundancy and synergy among security features. Two security
features could interact, with effects difficult to judge from information on the
individual effect of each. Quantitative estimates of such interactions could be
obtained in the same way as the data on individual security features, by polling
of industry experts or experienced system administrators.

To highlight a particularly important synergy effect, a more-detailed model
would acknowledge that as an organization’s systems become more resistant
to attack, not only will fewer attacks succeed but the organization will present



128  The UMAP Journal 25.2 (2004)

a less-appealing target and fewer attacks will be launched. The provided es-
timates of security effects may take this into account for individual security
features, but a successful combination of many security measures will have an
even greater effect.

We have ignored the variation in the expert estimates of the effects of dif-
ferent security measures and policies. A more-detailed analysis could easily
produce estimates of the uncertainty in our predictions of the savings result-
ing from each security configuration we propose. An improved version of our
model would give priority to a security feature whose effects are known with
reasonable certainty over a feature which is expected on average to be more
beneficial but in which we can have no confidence.

Finally, to make this model more effective, it is essential to expand the num-
ber of security measures and policies considered. The nine types of techno-
logical defensive measures and seven policy defenses considered here hardly
represent the entire spectrum of approaches. For example, no consideration
has been given to physically protecting the university’s hardware, a legitimate
information technology concern with definite potential effects on the C, I, and
A factors considered in the model. Perhaps worse, currently we consider only
one nonspecific “user training” policy. Some form of user training is the best
defense against “social engineering” attacks, which are already a major un-
realized vulnerability and likely to become only more common in the future.
Research into available measures to address physical and other security factors,
and a closer examination of user training possibilities, would make our model
potentially much more powerful.

References

Greenberg, Eric. 2003. Mission-Critical Security Planner: When Hackers Won't
Take No for an Answer. New York: Wiley.

Honeynet Project. 2003. Know your enemy: Honeynets—What a Honeynet
is, its value, how it works, and risk/issues involved. http://project.
honeynet.org/papers/honeynet/index.html . Last modified 12 November
2003.

Hsiao, David K. 1979. Computer Security. New York: Academic Press.

Levine, John, Richard LaBella, Henry Owen, Didier Contis, and Brian Culver.
2003. The use of honeynets to detect exploited systems across large enterprise
networks. Proceedings of the 2003 IEEE Workshop on Information Assurance,
United States Military Academy, West Point, NY, June 2003. http://wuw.
tracking-hackers.com/papers/gatech-honeynet.pdf .

Spitzner, Lance. 2003. Honeypots: Simple, cost-effective detection. http:
//www.securityfocus.com/infocus/1690 . Last updated 30 April 2003.



