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Summary
A May 2002 Transportation Security Administration (TSA) press release de-

scribes pilot testing of different baggage screening programs at three airports
[Melendez 2002]. One airport used all Explosive Trace Detection (ETD) ma-
chines, one used all Explosive Detection System (EDS) machines, and a third
airport used half and half. We show that these pilot tests were unnecessary.

We focus on maximization of productivity of the machines and of the
amount of time they have to process the highest peak in checked bags. We
show the importance of proper flight schedule planning and the ideal method
for scheduling.

The implementation of the model’s conclusions will save money in pur-
chasing and installing machinery. Security will be paramount. Minimizing
passenger inconvenience will be the secondary concern; but under our model,
we eliminate, or at least minimize, expected delays.

By extending our model, we can also potentially find the optimal amount of
time before takeoff when passengers should be required to arrive at the airport.
To minimize cost, this time may need to be increased or decreased, depending
on experimental data.

General Assumptions
• We assume all data as given on the problem statement.
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• Flight delays due to baggage inspection are unsatisfactory. However, a 15-
minute delay is considered on time, according to FAA policy [Mead 2002].

• The percentage of planes that are cancelled before baggage is checked is
negligible.

• There are no extreme unforeseen circumstances, e.g., striking workers that
might affect baggage screening and flight departures.

• The number of passengers who check more than two bags is negligible.

• All airports have EDS or other scanning machines functional, so we do not
need to rescan bags from connecting flights originating elsewhere.

• A system of bag queuing and prioritizing process is in place.

• Prioritizing negates the benefits of passengers arriving earlier than manda-
tory time.

• There is no significant delay in having to re-scan or hand-examine bags due
to false positives.

• The throughput rate of bags per hour per EDS machine can be increased to
210 bags/h/machine by training the operators.

• We ignore the cost of repurchasing EDS or ETD machines due to defects and
breakdowns. We also assume that performing scheduled maintenance on
these machines reduces the chance of machine failure.

• We ignore potential lines at the airline check-in desk.

The Model

QEDS =




φ

8∑
i=1

(tiniPseats filledi
)

Ω�(1 + τ − µ)




(1)

where

QEDS = number of EDSs needed;

� = throughput rate of each machine (bags/h/machine);

τ = minimum early passenger arrival time (h), i.e., how long before departure
the airline closes bag check-in;
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µ = travel time of one bag between EDS and the plane (h);

ti = number of seats on flight of type i;

ni = number of flights of type i during the peak hour;

Pseats filledi
= estimated percentage of seats filled in flights of type i;

φ = summation shift constant, defined below;

Ω = percentage of time that the EDS is operational (given as 92%).

Derivation
We are dealing with a model of rates, such that Bpeak, the number of bags

in the peak hour, equals the rate of bags processed multiplied by the amount
of time T . The rate of bags per hour depends on �, the number of bags that one
machine can process in one hour, times QEDS, the number of EDSs. We combine
these equations and solve, getting

QEDS =
Bpeak

�T
.

Since each EDS is operational only portion Ω of the time, we must discount the
time by this constant, Ω, yielding

QEDS =

⌈
Bpeak

Ω�T

⌉
.

We add the ceiling brackets because the number of EDS must be whole. We
now derive formulas for Bpeak and T .

Bpeak

The aggregate number Bpeak of bags on one flight is the number of passen-
gers times the average number of bags that each carries. The average number
of bags per passenger, b̄, is b1 + 2b2, where b1 and b2 are the proportions of
passengers who check one bag and two bags, respectively.

The problem statement lists seating capacities of eight flight types, but the
number of passengers per flight depends on the probability that those seats are
filled, Pseats filledi

. By multiplying the number of bags on one flight, b̄tiPseats filledi
,

by the number of flights of the same type departing in the peak hour, ni, we
get the total number of bags on all flights of type i. By summing up all eight
flight types, we arrive at

Bpeak =
8∑

i=1

tiPseats filledi
b̄ni.

However, a couple of other factors need consideration.
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Flight cancellations. The problem statement says that 2% of flights are can-
celled daily. However, in our flying experiences, a flight is generally not
cancelled until after the bags have been checked and the passengers are
waiting at the gate or perhaps already on the flight. When forced to, airlines
tend to delay flights as long as possible, canceling only after all other options
have been exhausted. Thus, we assume that the cancellation of flights does
not affect the number of checked bags to be scanned.

Connecting passengers. Since airports must scan all bags, and since typically
the EDS machines are in the passenger check-in area, we assume that bags
of connecting passengers do not need to be rescanned, in agreement with
current FAA policy. We define the percentage of non-connecting passengers,
i.e., those originating in our airport, as Porig.

Including these factors, we get

Bpeak =
8∑

i=1

tiPorigPseats filledi
b̄ni.

Defining the summation shift constant φ = b̄Porig, we have

Bpeak = φ
8∑

i=1

tiPseats filledi
ni.

Substituting this into the formula for QEDS, we get

QEDS =




φ

8∑
i=1

(tiniPseats filledi
)

Ω�T




,

with T yet to be shown to be (1 + τ − µ).

The Cost Function Caveat
The ultimate goal is to minimize cost. This model’s cost function (in thou-

sands of dollars) for airport A is QEDS(1100+ω), and for airport B, QEDS(1080+
ω), where ω is the operating cost per machine, and 1100 and 1080 are the costs
to purchase and install the machines at each airport, according to data in the
problem statement. To minimize cost, we minimize QEDS, either by reducing
Bpeak, increasing �, or increasing T .

Minimizing Bpeak would involve having passengers check fewer bags or else
reducing the number of passengers flying during peak hour, via either flight
cancellation or rescheduling to non-peak times. Flight cancellation would
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involve lower airline revenue and fewer choices of flights for consumers and
is clearly undesirable. Rescheduling to non-peak times seemingly would
be desirable; but surely the airlines and airports have already tackled this
issue in the past, so further progress in rescheduling cannot be expected.
Finally, requiring passengers to check fewer bags (which the threat of longer
wait times might indirectly accomplish) would be unpopular; furthermore,
merely suggesting passengers bring less checked luggage cannot be relied
upon.

Maximizing �, the number of bags per hour that each machine can process. We
assume that the range between 160 and 210 depends on the competence of the
operator. Thus, by instituting a more comprehensive and extensive training
regimen, we can hope to increase �. We also assume that the savings due to
needing fewer machines outweigh the costs of increased training. Acknowl-
edging that other factors could limit the machine’s output, we estimate � to
be a modest 190 bags/hour/machine.

Maximizing T . All airlines have a time τ before departure after which a pas-
senger may not check in and board. Taking into account data supplied in the
problem statement, we have τ = 45 min. By then, all bags will be present,
so EDS operators can be guaranteed τ − µ min to process bags for a flight,
where µ is the time to load the bags onto the plane. As we have no data, we
arbitrarily set µ = 6 min, so EDS operators have at least 39 min (0.65 h) to
process the bags. Our task is to maximize this amount of time.

If the peak hour were the only hour in which flights departed, EDS processing
for peak hour can begin 45 min before the first flight, and the last bag of the
last flight must finish being processed 6 min before the end of the hour. Thus,
we have at most 1 h 39 min to process all of the bags. Therefore, the total
time is T = 1 + τ − µ.

To use this maximum time interval best, we need a steady supply of bags
coming in, to allow the machines to operate at maximum output for the
entire time interval. As we will show, we can come close to a constant flow.

We now revoke the assumption that the peak hour is the only hour of flights.
The bags in the hours immediately before and after peak, by definition fewer
than Bpeak, can be processed in less time than needed to process Bpeak. When
the peak hour’s first bags arrive 45 min before the peak hour begins, we
cannot yet assume that the EDSs will be available to process them, because
flights departing during the hour before peak will have bags that still need
to be processed. Similarly, we cannot assume that the EDSs can process our
peak hour’s bags all the way up to the last moment, since the bags of the next
hour’s first flight will likely require more than a few minutes to process. So,
we should expect encroachments on the 1.65-hour maximum time interval.
However, both the highest morning and evening peak hours are sufficiently
greater in volume than the neighboring hours [Bureau of Transportation
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Statistics n.d.], so we can operate at maximum time, 1.65 hours, without fear
of other periods’ effects. So, we define T = (1 + τ − µ) and arrive at (1).

Solving for the Optimal QEDS

Calculating Bpeak

We examine each component of the equation

Bpeak =
8∑

i=1

tiniPseats filledi
b̄Porig.

The problem statement tells us that 20% of passengers check no bags, 20%
check just one bag, and 60% check two bags. So, the average number of bags
per passenger is b̄ = 1.4.

Using the given proportions of seats filled for the various types of flights
plus data from the T-100 Domestic Segment table in the Large Air Carriers
database from the Intermodal Transportation Database [Bureau of Transporta-
tion Statistics n.d.], we calculate the averages for each flight type i:

Pseats filledi
=




.8679, 1 ≤ i ≤ 3;

.8194, 4 ≤ i ≤ 7;

.7705, i = 8.

On average, 15% of passengers are from connecting flights, so Porig = .85.
Our equation has now become

Bpeak = (.85)(1.4)
8∑

i=1

tiniPseats filledi
= 1.19

8∑
i=1

tiniPseats filledi
.

Substituting in the values for airports A and B for ti and ni (from the Technical
Information Sheet) and our values for Pseats filledi

, we get

Bpeak at A = 5286 bags, Bpeak at B = 5683 bags.

Calculating QEDS

An EDS is operational Ω = 92% of the time. We use � = 190 as an average
value for the rate of bags per machine per hour. We have τ = 0.75 h and
µ = 0.1 h. Using these values and the respective values of Bpeak for each
airport, we arrive at

QEDS for A = 19, QEDS for B = 20.
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Exploring φ

During holidays, passengers are more likely to carry more bags. We examine
the extreme of each passenger carrying two bags, which alters φ to 1.7. Table 1
shows the effect on delays for airport A; results for airport B are similar.

Table 1.

Delays (in min) for airport A, for various machine speeds �, values of φ, and proportions of seats
filled. The value φ = 1.7 corresponds to each passenger checking two bags.

� φ = 1.19 φ = 1.7
max est. min max est. min

160 39 14 0 98 63 21
190 17 0 0 67 37 2
210 6 0 0 51 24 0

As expected, delays are greater when each passenger checks two bags. In
addition, there will probably be more seats filled during this time period. How-
ever, since these busiest times of the year occur so rarely, we believe it is not
worth buying extra machines to handle this overload. A possible solution to
increased baggage is to turn to more temporary solutions, such as renting other
portable screening devices or hiring extra workers or K-9 dogs.

In the worst-case scenario, on the busiest day of the year in airport A or
B, when every flight in the peak hour is full, and the EDS is operating at its
highest rate (� = 210), there will be only about 50 min of delay. We believe this
is acceptable.

Scheduling Algorithm
We developed the following algorithm to schedule the departure of differ-

ent flight types within the peak hour so that the number of passengers, and,
consequently, the number of bags, is evenly distributed.

1. Obtain data on the number of flights and seats on each flight.

2. Modify the seat data to represent the average number of people on each
flight. To do this, multiply by the estimated percentage of seats filled for the
type of the given flight.

3. Calculate total number of people on all flights during the peak hour.

4. Determine the desired number of time intervals during the peak hour. We
chose 6 as an appropriate number.

5. Determine the average number of people to fly during each time interval.
Allocate that number of spaces for each interval, i.e. total number of people
divided by 6.
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6. Do the following n times (where n = total number of flights):

(a) Find the flight with the most people on it.

(b) Starting at the first interval, and searching sequentially through to the
last, find the time interval with the most number of spaces still available.

(c) Assign said flight to this time interval.

(d) Subtract the number of available spaces by the number of people on said
flight.

7. Make sure there is a flight at :00 and one at :59 to ensure the efficiency of
our model, so as to maximize the time interval available for processing and
allow the use of machines at full capacity. To do this:

(a) For the first 30 minutes, start at the beginning of the time interval and
evenly distribute the interval’s assigned flights in order of decreasing
flight capacity and increasing time.

(b) For the second half hour, start at the end of the time interval (:39, for
instance) and evenly distribute the interval’s assigned flights in order of
decreasing flight capacity and decreasing time.

Essentially, we are evenly distributing the flights scheduled in this peak
hour among six 10-minute intervals. The flights were modified to represent
the average number of passengers per flight, rather than the number of seats
per flight, since the former has more impact on the number of bags scanned
than the latter. The manner in which the flights are distributed among those
intervals is analogous to filling a jar with different-sized rocks. Begin by adding
the largest rocks, then smaller rocks, then pebbles, then sand, and finally water.
With each additional step, you are filling in gaps. If you start with water and
fill up the jar, then there is no room left for anything else. Thus, we start with
the larger capacity flights and move our way down.

We wrote a computer program in C++ to implements the algorithm. [EDITOR’S
NOTE: We omit the program code.]

Figure 1 shows the number of bags still left for the EDS to process at airport A
after each minute in airport A, as a function of time, according to our algorithm.
For airport B, the results are similar.
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Figure 1. Bags left to process at airport A, as a function of time, according to the flight-distribution
algorithm.

Cost Analysis of EDS and ETD

C(α, ω, Z) = Bpeak

(
α(1000 + ci + ωZ)

ΩEDS�EDS(1 + τ − µ)
+

(1.2 − α)(45 + 10ωZ)
ΩETD�ETD(1 + τ − µ)

)

where

C = total cost of recommended system;

Bpeak = total number of bags during the peak hour;

α = percentage of Bpeak that the EDS will screen;

ω = hourly operational cost of EDS; cost of ETD machine is 10 times this amount;

Z = years

ci = installation cost of EDS, dependent on airport (thousands of dollars);

� = throughput rate of each machine (bags/h/machine);

Ω = percent of time that the machines are operational;

τ = minimum early passenger arrival time (h);

µ = travel time of one bag between EDS and the plane (h);

1000, 45 = cost of EDS and ETD machines, respectively (thousands of dollars).

We also assume that the installation cost of the ETDs is negligible.
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Deriving the Model
By requiring that 20% of all bags be screened through both an EDS and an

ETD machine, the effective number of bags to screen increases by 20%. The
number of bags that go through the EDS, BEDS, plus the number of bags that go
through the ETD machine screening, BETD , must equal this effective number
of bags. Therefore,

Beff = 1.2Bpeak = BEDS + BETD.

The time to screen all these bags remains the same as in our previous model,
and therefore τ and µ have the same values as given earlier. Likewise, the
equation to determine the number of EDSs remains the same, and the number
of ETD machines can be determined using the same equation with parameters
for ETDs substituted.

Cost
The initial cost per machine equals the machine cost plus installation cost.

EDSs are given as costing $1 million, while ETD machines are only $45K. Luck-
ily, ETD machines are usually fairly small and portable, so their installation
costs are assumed to be negligible. However, the installation cost of EDSs, ci,
is substantial: $100K for airport A and $80K for airport B. The annual variable
cost of operating the machinery is ω for an EDS, 10ω for an ETD. We adopt a
horizon of Z years.

The total cost C is the fixed cost plus the variable cost of each machine
over the time horizon. All costs in the following equations are in thousands of
dollars.

C(ω, Z) = QEDS(1000 + ci + ωZ) + QETD(45 + 10ωZ).

Substituting, we get:

C(ω, Z) =
BEDS(1000 + ci + ωZ)
ΩEDS�EDS(1 + τ − µ)

+
BETD(45 + ci + 10ωZ)
ΩETD�ETD(1 + τ − µ)

.

However, the number of bags going through each EDS is related to the
number of bags going through each ETD machine. In addition, the number of
bags going through each EDS is between 20% and 100% of the total number
of peak-hour bags. We represent this relationship by the coefficient α, with
0.2 ≤ α ≤ 1.

BEDS = αBpeak.

Substituting into the cost equation, we are left with

C(α, ω, Z) = Bpeak

(
α(1000 + ci + ωZ)

ΩEDS�EDS(1 + τ − µ)
+

(1.2 − α)(45 + 10ωZ)
ΩETD�ETD(1 + τ − µ)

)
.
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Using Maple, we plot C as a function of α and keep ω constant at an arbitrary
$50K. We can see in Figure 2 that after various number of years, the cost of the
machine can significantly depend on the number of bags that go through each
machine, which depends on α.

Figure 2. Costs over various time horizons for airports A and B.

For any α, the function C is linear in Z. Except for the particular Z value
that makes the slope 0, only 0.2 and 1—the extreme values for α—can yield
minimum values for C. This means that there are two significant cases to
study:

• the EDS-led system, in which EDSs are the first tier of baggage scanning,
processing 100% of the bags, and ETD machines are the fail-safe, scanning
20% of the bags; or else, vice versa,

• the ETD-led system, in which ETD machines process 100% and the EDSs
scan 20%.

We show later that the case of α between these two extremes is undesirable.
Installing an ETD-led system (i.e., α = 0.2) would be cost-effective only

for a very short time horizon of a few months. This makes sense since the
installation cost of an all-EDS system is very expensive, while the total of the
high variable cost of operating the ETD machines is low over a short duration.
However, after a few months, it is optimal to have α = 1, or an EDS-led system,
since this has minimum cost in the long run. The graphs assume that the cost of
operation of the EDS is ω = $50K per year, which may or may not be realistic.
A different value of ω will affect the slopes of the hs, thereby affecting when
α = 1 becomes optimal. Therefore, by finding where the derivative of the cost
function is zero, we can find the critical turning point for our model at any ω,
such that after this time, an EDS-led system would be more desirable. We have

∂

∂α
C(α, ω, Z) = Bpeak

(
1000 + ci + ωZ

ΩEDS�EDS(1 + τ − µ)
− 45 + 10ωZ

ΩETD�ETD(1 + τ − µ)

)
.

Setting this expression equal to 0 and solving for Z, we find

Z(ω) =
1
ω

(
45ΩEDS�EDS − (1000 + ci)ΩETD�ETD

ΩETD�ETD − 10ΩEDS�EDS

)
.
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Notice that Z is inversely related to ω. Also, Bpeak and (1 + τ − µ) cancel out,
thereby not influencing the critical cutoff time. Therefore, the only difference
between airports A and B is the installation cost, which is unnoticeable when
plotted. Therefore, just for airport A, we plot Z as a function of ω in Figure 3.

Figure 3. Time to equal cumulative cost as a function of annual operation cost of an EDS.

For (ω, Z) combinations below the curve, an ETD-led system is more cost-
efficient; however, the operational cost of each machine will be high enough to
make an EDS-led system cheaper in less than one year. Given not only a life
expectancy of EDSs around 10 years but also bureaucratic inertia, we cannot
expect the EDS-ETD system baggage inspection system to be replaced soon
enough so that an ETD-led system will minimize costs. An EDS-led system is
more desirable

Even though ETD machines become quite expensive after a short amount of
time because of high operational cost, the low fixed cost might come in handy
during the peak hours of peak times of the year. It would not be cost-efficient
to buy extra EDSs just to handle these periods, but airports could buy extra
ETD machines and store them until needed.

Determining QEDS and QETD

We have determined that 100% of the bags should go through an EDS. We
can calculate the total number of machines to buy by plugging the numbers
into our initial equations:

QEDS =
αBpeak

ΩEDS�EDS(1 + τ − µ)
, QETD =

(1.2 − α)Bpeak

ΩETD�ETD(1 + τ − µ)
.
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We estimate �ETD = 47 bags/hour/machine, the average throughput rate
of the ETD machines at the Winter Olympics in 2002 [Butler and Poole 2002].
The other constants have the same values as we used in our earlier model:

Bpeak at A = 5286, Bpeak at B = 5683

�EDS = 190, �ETD = 47
ΩEDS = .92, ΩETD = .98

τ = .75, µ = 0.1

Using these values, we find

QEDSA = �18.33� = 19, QEDSB = �19.70� = 20;
QETDA = �13.91� = 14, QETDB = �14.96� = 15.

As expected, the EDS values for both airports are unchanged from our previous
results, when we had not yet considered the ETD machines.

Recommendations for the Future
Although an EDS-led system, with merely enough ETD machines to cover

20% of the bags, is optimal based on our calculations, it might not be the absolute
best solution. An important consideration is whether or not new technology
might replace the machines before the critical cutoff time. For example, if
current technology trends show that a better baggage screening system will
be ready in less than a year, it might be worth taking the risk and buying an
ETD-led system. Then, within the year, buy the better machines, with lower
operational costs, that can replace the ETD machines. However, not only would
this save very little, but this is quite a risk to take since your operational cost
for the ETD machines will hurt the airport terribly if better technology does not
come out in time. Therefore, our model shows that unless current trends show
an immediate market introduction of new and advanced technology,

the best solution is to have all bags screened by EDSs and only 20% screened by ETDs

Down the road, however, we may need to re-evaluate the system.
Other variables that we should weigh heavily are the false positive rate,

the false negative rate, and the human reliability factor. The false positive
rate and the false negative rate should both be kept as low as possible, but it
is more important that the false negative rate be extremely close to 0, as this
affects the accuracy of the machine, while the false positive rate merely affects
the efficiency of the machine. Increased precision would not only increase the
safety of our air traffic system but also reduce the number of secondary, fail-safe
screening devices, thus saving money. Currently, EDSs are widely reported to
have between 22% and 30% false positive rates, which is ridiculously high.
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New technology seems to be decreasing significantly this inefficiency, which
will result in less required re-screenings and human intervention. A machine
with high false negatives used as a first-tier scanner (as in the EDS in the EDS-
led system) is very dangerous, and to counter the threat of explosives slipping
through, costly random screening of negatives with a second device will be
needed, though still not eliminating the said threat.

Conclusion: Strengths and Weaknesses
The main strength of our model is that the number of EDS machines it

projects will work well even if some assumed constants and probabilities shift.
More accurate statistical data, as should be available to airport administrators,
would yield a more accurate optimal number of machines needed. The delays
caused by fluctuations in assumptions are, under most every case, within ac-
ceptable ranges for delay, i.e., delays for other reasons happening at the same
time. If this model is implemented, it should be stressed that the system is
designed so that no extra delays should be expected. If this argument is sold
to the people convincingly enough, instances of delay should not make pas-
sengers more likely to blame the EDS system over other causes for delay, such
as waiting for connecting passengers, bad weather, or mechanical difficulties.
Extreme circumstances, such as holiday travel days, normally force delays; any
delay in the EDS system on such a day, if not compensated with temporary ETD
machines, would run parallel to—not in addition to—delays already occurring.
Besides, air travelers will be willing to wait a few extra minutes occasionally if
it gives them a sense of security that many lacked following September 11.

One weakness of our model is that we did not go into different methods
for implementing the prioritization and queuing regime for bags entering the
explosives scanners. We considered several options. The tags placed on the
bags at the check-in desk could list departure time, thus allowing easy sorting.
This, however, does not allow for changes in departure time due to delays. A
departure-listing screen, like those posted throughout the airports for passen-
gers, could be displayed by the EDS machines. This list will be very long at a
large airport, though, and would require EDS operators to recheck the display
frequently.

Another weakness is that we ignored the placement of the EDS machines.
Most EDSs are placed in the airport lobby near the check-in area. In a large
airport, this could mean that the machines are spread out over a large area.
So, the EDS machines could not work together like one unit, as our model
implicitly assumes. This would mean a loss of efficiency: machines at one end
of the airport could run out of bags while those at the other end could have
too many. This problem could be remedied in the flight scheduling process,
factoring in airline check-in desk placement in the even distribution of bags over
the hour. The scope of that undertaking is far outside what we can accomplish
here, though it ultimately deserves consideration.
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