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Introduction
We extrapolate longevity data and explore the long-term behavior of the

population age distribution. We determine the number of dartings to fix the
long-run stable population at 11,000; about 1,300 dartings are needed for an
every-other-year strategy. We employ two simulations, one based on averages
and the other tracking each elephant individually, whose results agree closely.

Our modeled population recovers from sudden declines and is not overly
sensitive to small changes in survivorship data. The model also allows esti-
mating the number of dartings if up to 250 elephants are relocated each year.

Assumptions
• We are told that emigration and immigration are rare, so in our model no

elephants enter the park except those that are born. None leave except those
that die or are relocated.

• Fifty percent of the elephants are female, as the problem suggests.

• It is beneficial to the population as a whole, as well as more economically
feasible, to use as few contraceptive darts as possible.

• Cows first conceive when they are 11 years old, rather than some time be-
tween ages 10 and 12.

• Gestation always takes 22 months exactly, instead of approximately.
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• The darts work, so a cow hit by a dart will not conceive for two years.

• Otherwise, cows give birth every 3.5 years until they reach the age of 60.

• There is a 1.35% chance that a given birth will result in twins.

• The survival rate for the first year is .75.

• The initial population is 11,000 individuals.

• The rangers can readily determine which females are not pregnant, so that
no pregnant females are darted, as at Kruger National Park in South Africa,
which uses a similar contraceptive program [Purdy 1998].

• Cows normally mate once every 3.5 years. The cycle of a cow darted is not
disrupted. If the effect of the dart wears off before she would normally mate
and become pregnant, she conceives and gives birth on schedule.

• Previous methods of population control eliminated individuals randomly, so
no age group was disproportionately depleted and the relocated elephants
have an age distribution that is typical of the population as a whole.

• Since the methods of population control that have been used have no effect
on the fertility of the cows, we assume that the initial birth rate is constant.

Analysis of the Problem
We predict the long-term behavior of the elephant population as a function

of the number of females. If we track each elephant individually, we must track
11,000 individuals; if instead we look at the population as a whole and take an
average-case scenario, we must find formulas for birth and death, mating,
aging, and the added effects of the contraceptive darts.

We use both methods. First, we use a computer simulation to track each
elephant through its lifespan: We use known probabilities to determine when
each elephant is born, reaches maturity, gives birth, and dies. We can use this
simulation to test any darting strategy. The results are far less smooth than for
an average-case scenario.

We also use another program based on recursive equations to predict the
average-case behavior of the population, which we divide into groups of the
same age. This method requires far less computer time. The replacement of
random events with a deterministic average allows for ready investigation of
long-term behavior without interference from individual unlikely events.

Using these two models, we find a mathematical expression for the dynam-
ics of the population and then use these programs to forecast the results of our
darting strategy and to demonstrate its stability and flexibility.
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Task 1: Predicting Survivorship
There are three distinct phases in the life of an elephant.

• From birth until five years old, the young elephant is very susceptible to
predators and accidents and cannot fend for itself while it still nurses from
its mother [African Wildlife Foundation 1998].

• After it is weaned, at five years of age, it lives most of the rest of its life
in relative safety. Several things can kill an adult elephant, but none has a
major effect on the population. There is a low rate of disease, accidents are
very rare, and no natural predators can kill something as large as an adult
elephant [Hanks 1979, 109]. Therefore, over this period the death rate of the
elephant is fairly low, about 2% per year.

• Over the course of its lifetime, the elephant grows six sets of molars; around
age 50 the final set of teeth wears out, making it impossible for the elephant
to properly chew its food, so that the animal eventually starves to death
[Holloway 1994].

We construct a survivorship curve as a piecewise function, with each seg-
ment corresponding to one of these phases. Using our assumptions that the
given data are a random sample of the elephant population, that the birth rate
in the park has been essentially constant, and that the previous killing has
been evenly distributed over the population of elephants, we conclude that the
demographic shape of this population is typical for an elephant population.

Survivorship lx is the fraction of the population alive after x years. To
compute the survivorship from the data, we sum the data from each year to
get a larger sample size and divide the entire data set by the population at age
zero. The final survivorship data looks like Figure 1.

Figure 1. Survivorship function.

The data divide up roughly into three linear sections corresponding to the
three stages of the elephant life cycle. These three sections appear to be well
approximated by lines, so we generate a piecewise function composed of three
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linear segments for the ages from 2 to 60, based on a least-squares fit. The two
points of discontinuity between the pieces of the function cause little error.

Figure 2. Survivorship data and fitted function.

The survivorship function is

lx =



−0.038806x + 0.77512, 2 ≤ x ≤ 5;
−0.007818x + 0.640015, 5 ≤ x ≤ 50;
−0.013116x + 0.799663, 50 ≤ x ≤ 60.

We calculate the probability of death pd as the fractional change in lx:

p + d = 1 − lx+1

lx
.

The assumption of a constant birth rate is incorrect, as the data are clearly not
monotonically decreasing. But given the assumption that previous population
control methods (i.e., shooting) did not affect the age distribution, our model
is presumably close to the actual profile.

Task 2: Achieving Stability
Birthing cows are females older than 11 and younger than 60 who can give

birth; we choose some number D of nonpregnant cows to dart. Because of
the additional stress on the darted population and the expense of darting, we
should dart as few elephants as necessary.

How often should we dart cows? Darts remain effective for two years.
Because the darted elephants are not tagged when they are darted, annual
darting would lead to some elephants being darted two years in a row. Darting
every two years uses fewer darts and simplifies our solution.

In a population with a stable birth rate, the same distribution occurs among
the age groups—each segment of the population has a characteristic percentage.
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The only segment that we can directly affect is the fraction fb that are newborns;
the goal is to stabilize the number N of newborns. So, in an ideal setting, after
the population stabilizes, we have N = Efb.

The actual number of newborns is proportional to the number of cows that
can give birth in the next year multiplied by the average number of elephants
produced at the end of a successful pregnancy and the average chance of a
pregnant female surviving long enough to give birth. The average number of
elephants born after a pregnancy is one plus the chance pt of having twins. The
average chance of survival p̄s for up to one year is

p̄s =

∫ 1

0
(1 − pd)t dt

1 − 0
=

(1 − p + d)1 − (1 − pd)0

ln(1 − pd)
=

−pd

ln(1 − pd)
.

The number of pregnant cows that could give birth next year is the number of
cows that were not darted two years ago, survived for two years, and are now at
least 10 months pregnant. Because cows are distributed randomly throughout
the mating cycle, the chance that a pregnant cow is within 12 months of giving
birth is 12/42. The chance of a cow having survived for two years is simply
(1−pd)2. The chance that a cow was not darted two years ago is the probability
that a nonpregnant cow was not darted two years ago, or one minus the number
that were darted two years ago over the number of cows that were not pregnant
then. Let P denote the number of pregnant cows. Substituting for the number
of cows within a year of giving birth, we find

N = (1 + pt)p̄s · 12
42

· C(1 − pd)2
(

1 − D

C − P

)
.

We set the real number of newborns equal to the ideal number of newborns
and solve for the number of dartings. This tells us the number of elephants
that we should have darted two years ago. We base the number of darts to use
this year on the effect that the darts had two years ago. Because other terms are
constant every year, we can apply the darting equation and find the number
of cows to dart this year using this year’s C and P . In the case of an excess of
newborns, darting increases; if too few births occur then D becomes negative,
suggesting that more pregnancies are needed than the population can produce
even if no cows are darted.

D = (C − P )
(

1 − 11,000fb
12
42 · C(1 + pt)p̄s(1 − pd)2

)

For values of the parameters, we have 1 + pt = 1.0135 and p̄s(1 − pd)2 = 0.94.
The equation should give the number of dartings for tending toward a steady
number of newborn elephants How does it behave? To find out, we wrote
a program to trace the progress of the population over time. Each year, the
number of elephants in one age group times their chance of survival becomes
the number in the next age group. We replace the newborn age group with a
new generation calculated as the number of pregnant elephants that gave birth
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in that year times the number of newborns at each birth, 1 + p. Figure 3 shows
the convergent, oscillating pattern that results.

Figure 3. Population over time.

For the first several years after we introduce the contraceptive, the popula-
tion fluctuates as the model adjusts to compensate by stabilizing the birth rate.
In the past, up to 800 elephants were killed every year; here the population
never diverges from 11,000 by that much.

How many elephants are darted? While the number initially fluctuates
between 0 and 2,000, it levels out to around 1,300 darts per biennial darting, or
about 25% of the female population.

Figure 4. Numbers of elephants darted.

We can simulate the population more accurately by keeping track of each
elephant as it ages, gives birth, and dies. Instead of using average probabilities,
we use random events to simulate the chaos of the real world. We also keep
track of the population on a monthly instead of a yearly basis. Figure 5 shows
a graph produced by our random case simulator. The darting strategy still
causes the population converge to 11,000 after some time.
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Figure 5. Numbers of elephants darted.

Figure 6. Age distribution initially, after 30 years, and after 60 years of the darting strategy.
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Over time, the age distribution tends to shift towards more very young
elephants and newborns and fewer old elephants. Figure 6 shows the initial
population distribution and the distributions after 30 years and after 60 years:

• Initially, there is a large number of animals between 25 and 45 and the number
of newborn animals is not much larger than all the others.

• After 30 years, there are noticeable spikes in the population due to the large
fluctuations that occur during the first several years of the model. There are
large numbers of the slightly younger animals, which is good for tourism—
tourists usually are attracted to cute animals; additionally, there are still large
numbers of the large majestic elephants that everyone wants to see.

• After 60 years, the curve has become much more regular. The only large peak
is at the baby elephants. This is the best possible situation for tourists—you
can see a good representation of the whole spectrum of young and old, plus
a large number of cute babies.

Task 3: Relocation
Relocating elephants each year could make our method more successful,

by reducing the number to dart and reducing the stress on females of monthly
oestrus. Since we are darting every two years and relocation would remove
pregnant and fertile elephants, the combination of darting and relocating has
the potential for creating a population disaster; however, we can avoid such a
problem by picking the right number of elephants to relocate.

A simulation of relocating 100 elephants per year gives a graph of popula-
tion much like Figure 7.

Figure 7. Simulation of removing 100 elephants per year, in addition to darting.

The population drops severely in the first few years but recovers. If this
population drop of up to 8% is acceptable, relocation seems to be a viable
option. As well as looking at the effects of relocation on population over time,
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we can also track how many darts we save by relocating various numbers of
elephants. The average case results are summarized in Table 1.

Table 1.

Darts saved by relocating.

Relocations Darts used Average number of darts % of darts saved
per year in 50 years per darting

0 29,900 1,196 0%
50 24,700 988 17%

100 20,200 808 32%
150 16,250 650 46%
200 12,750 510 58%
250 9,700 388 68%

Relocating more than 250 elephants a year could cause an uncontrollable
population crash after only a few years.

Task 4: Disaster Recovery
Darting may not allow the population to recover from a disaster even if we

immediately stop darting. We examine a number of disaster scenarios and see
how our model responds to them.

• The first case is a major disaster, such as a rapidly spreading and very deadly
disease that indiscriminately kills all segments of the elephant population.

• Next we consider a natural disaster, such as a drought or a famine. In such
a disaster, the weakest elephants are most likely to die; these tend to be the
youngest and oldest elephants in the population. To model this, we kill
portions of the population that are under the age of 10, because they have
not yet reached maturity, and portions that are over 50, because they are
suffering from the effects of old age.

• Finally, we consider the effect of excessive hunting. Hunters hunt elephants
with large tusks, found on very mature elephants. Therefore, we remove
parts of the population over the (arbitrary) age of 40.

In each case, we compared removing 10% with removing 50% of the selected
population, to simulate moderate and severe disasters. In each scenario, the
disaster occurs during year 10.

In the case where 10% of every segment of the population dies, the popula-
tion hits a minimum of 9,500 and increases fairly steadily thereafter; even for
a 50% kill-off, the population still recovers (Figure 8). While it might be pos-
sible to recover faster, doing so causes dangerously large oscillations once the
population has returned to its normal levels. This way, the population makes a
steady recovery and reaches normal levels while still remaining under control.
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Figure 8. Effects of moderate and severe major disasters (age groups affected equally).

After a natural disaster that kills 10% or even 50% of the very young and
very old elephants, the recovery is faster because the young and old are not
heavily involved in reproduction (Figure 9).

If hunters kill 10% or even 50% of the population over the age of 40, a signif-
icant number of reproducing animals are killed, so the recovery is somewhat
slower (Figure 10).

Our schedule of darting would allow the population to recover from major
disasters. Assuming that such disasters occur only rarely, a park using our
management policy should have no trouble with population crashes.

Task 5: Justification to the Park Managers
You may well wonder why mathematics is useful in the task of regulating

the elephant population in your park. It seems easier to follow a simple set of
rules like the following:

• If there are more than 11,000 elephants, dart more than last time.

• If there are fewer than 11,000 elephants, dart fewer than last time.
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Figure 9. Effects of moderate and severe natural disasters (weakest elephants succumb).

Such a system is simple to understand but difficult to put into practice. For
one thing, it is hard to decide on an exact number to increase or decrease the
number of darts you are using. The other problem is that changes in the number
of dartings does not affect the population for another 22 months. These factors
make such a system very problematic in the real world.

Suppose we tried a system of darting a certain percentage of the elephants
every two years. If we picked precisely the right percentage, the population
would appear to hold steady at 11,000 for a little while, but the fraction of
the population that was pregnant would gradually change over time and the
population would go out of control faster than the function could compensate.
This result can be shown using a simple computer simulation of the population
over time.

A better goal than keeping the population constant is keeping the number
of elephants born each year constant. Since the rate at which elephants die does
not change much, keeping the number of births constant should eventually give
a constant number of elephants. Based on elephant birth and death statistics for
a healthy herd, we can adjust a healthy population of around 11,000 elephants
to a state of equilibrium. By calculating the number of elephants that are less
than one year old, we get a good idea of how many elephants were born last
year. Dividing by the total number of elephants gives the fraction of the total
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Figure 10. Effects of moderate and severe hunting.

population that must be born each year to keep the population stable.
We constantly have to readjust the number of dartings based on the effect

on the future population, for which we provide a formula. We have tried this
formula in several simulations and found it extremely adaptable and effective.
Its strength lies in the fact that it was derived using sound reasoning; any
darting method that does not use mathematics is little better than a wild guess
and will not produce satisfactory results. If you use a mathematical model
to control your elephant population, you will be satisfied by the long-term
behavior of the population. As always, there will be some random fluctuation,
but this model provides and effective solution.

Task 6: Generalization
We show that in many cases we can use our model for other parks with

different needs.
A key aspect of making our model work is finding an acceptable fb (the

fraction of the population that are newborns) for each target population and set
of conditions; this fraction is derived from survivorship data for the individual
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park’s population. Our method forces convergence to the target population.
Suppose that a park has similar conditions but that the death rate among

newborn elephants is .35 and the park aims for 25,000 elephants; we find fb =
0.046. This makes sense—the value of fb must be higher to compensate for
the higher death rate, which means that a greater proportion of the population
must be newborns in order to maintain the stability of the population.

As a second example, consider a park with a target population of 300 and
an infant death rate of 15%. In this case, fb = 0.013—smaller, to compensate
for a smaller infant death rate.

Any park with reasonable values for death rates and ideal number of ani-
mals should be able to work under this system.

Sensitivity Analysis
For a model incorporating as many parameters as this one does, it is vital

to determine which introduce the greatest error. Given a ±10% deviation in
the value of the parameter, we calculate the percentage change in the value
that the final system converges to. Table 2 summarizes the parameters that
have significant effects; the model is fairly insensitive to the values of other
parameters.

Table 2.

Sensitivity of the model to changes in parameters.

Variable From data +10% Equilib. % Diff. −10% Equilib. % Diff.
Herd Size Herd Size

Newborn .75 .825 16,200 47% .675 7,200 −35%
survival rate
fb .0255 .02805 12,100 10% .02295 9,935 −10%

It is vital to know accurately the newborn survival rate, since the final
population is so dependent on this value.

Strengths
• Our methods keep the elephant population under control, which is the main

point. The population converges to the ideal number of elephants in a rea-
sonable time.

• Our methods can incorporate various scenarios: contraceptive darting, re-
location, compensation for disasters, and application to other similar parks.

• This model is simple enough for the park rangers to understand.

• Our method can produce accurate predictions with very little computer time.
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• Our method is robust, so that other variables or situations can be easily
introduced.

• After the first five years, under normal conditions the population does not
deviate more than 200 elephants from the target value.

Weaknesses
• Our model is somewhat involved, and predictions cannot be generated with-

out a computer.

• The population does not stabilize at exactly 11,000.

• The model responds slowly (though surely) to dramatic changes in the pop-
ulation.

• The method does not allow the relocation of more than 250 elephants per
year, which might be possible with a more radical model.

Conclusion
Keeping a dynamic system like an elephant population under control is a

very old and difficult problem. It is made more difficult by the long life spans
and steady reproductive rates of elephants. We have developed a system that
is more humane and more adaptable than simply killing off excess elephants.
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