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Summary

We develop a queueing system model to determine the optimal number of
Explosive Detection System (EDS) and Explosive Trace Detection (ETD) ma-
chines to implement 100% baggage screening for airports A and B. We test the
model with data from United Airlines at Denver International Airport.

The particular queue system implementation does not affect queue length
but can affect the quantity of late bags and length of delay. Our two-queue
system model is 92% as efficient as an optimal priority queue, so a complex
queueing system is not required. If the system can handle peak-hour volumes,
there will be no delays during the rest of the day.

We also compare three flight-scheduling algorithms for peak-hour flight
departures and create flight schedules for airports A and B. Optimal scheduling
of peak-hour flights does not significantly change the number of machines
needed, although use of a greedy algorithm reduces late bags.

To meet the 100% baggage screening requirement using EDSs, we recom-
mend 10 for airport A, 11 for B, and 48 for United Airlines at Denver. These
conservative estimates account for breakdowns and a safety margin. To replace
EDSs, four times as many ETDs are needed.

Initial cost of implementation at airports A and B is $22.9 million. This cost
could be lowered by speeding the approval of cheaper and faster technologies
such as dual-energy X-ray, multiview tomography, and quadrupole resonance.
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Figure 1. Flight departures from Denver by United Airlines during a single day.

Baggage Screening Queueing Models

We construct a queueing model of the screening baggage for explosives
and test it with many more bags than it was designed to handle. Sample loads
include peak-hour traffic at airport A and at airport B and a flight schedule
modeled after traffic patterns at Denver International Airport. The raw data
for the Denver simulation, summarized in Figure 1, consists of 991 nonstop
flights on a typical Monday, as taken from a United Airlines timetable [United
Airlines 2003].

Terminology

Queueing System. A system for storing bags that arrive before a screening
machine can take them. The order in which the bags are removed depends
on the type of queueing system. Queueing systems are described by their
input, queue discipline, and service mechanism.

Queue. A system for storing bags which is first-in, first-out—that is, bags that
arrive first are the first to be screened. A single queueing system might be
composed of multiple queues.

Input. The input describes how the bags enter the system. In our model, the
rate at which bags arrive varies during the day.
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Queue discipline. The queue discipline describes how arriving bags are served,
such as first-in, first-out.

Service mechanism. The service mechanism tells how the bags are assigned to
servers (screening machines) as they leave the queue. Our model allows for
many servers; in the case of multiple queues, the service mechanism specifies
how machines are matched up with queues to process bags.

Formulation of the Model

We compute a schedule for the arrival of passengers and baggage. This
baggage arrival schedule is left fixed irrespective of changes we make to the
baggage queueing system to determine whether bags make it to flights on time.
Our goal is a model that determines how long each bag is delayed and hence
suggests an appropriate number of machines required for a specified load.

We make a number of simplifying assumptions:

e The time required to screen a bag is short. Any delay in delivery of the
bag is due entirely to waiting for screening, not to the screening itself. This
assumption allows us to disregard many distinctions among different screen-
ing machines; only the rate of screening is important.

e Discretizing time does notintroduce alarge error. Our simulation proceeds
in small discrete time steps. This time step, denoted 7" (usually 2 min), is
small in comparison to the time available for screening a bag, so rounding
times to the nearest multiple of the time-step does not cause a large error.

e Screening of a bag must be completed by some fixed time before its flight
departs; we use 10 min. A bag that does not meet this deadline is late.

e Baggage screening, not check-in or other processes, is the only bottleneck.
Passengers do not encounter another bottleneck before baggage screening,
such as a long line to check in, that affects the flow of bags into the screening
system. This assumption allows us to consider the worst-case scenario of
unlimited baggage inflow and to isolate the effects of the screening system
from other airport influences.

o It is not necessary to consider multiple separate screening systems at an
airport; if all are independent and approximately equally loaded, then the
system behaves as a single system.

e Baggage is processed at a constant rate. We do not allow for oversized
baggage or other variations that affect processing time of bags but assume
these are included in the averages.

Our model is a queueing system [Prabhu 1997]. The input is a list of bags
that arrive at each time step; the bags are grouped according to how much time
they are allowed before they must be finished with the screening process. A
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fixed number of servers each can process a fixed number of bags in any time
step.

General Analysis
Our queueing model can be described by several parameters:

e The service rate S (bags/time-step) is the rate at which machines can process
bags at full efficiency.

e The input rate \(t) (bags/time step) is the number of bags added to the
queueing system at time ¢.

Regardless of implementation, the number of bags in the queueing system
at any time is determined only by S and A(¢). The implementation of the
queueing system can affect the order in which bags are removed from the
queueing system, not the number in it.

The total number of bags in the queueing system at time ¢, denoted Q(t), is
determined by

Q(t+T) =max{0,Q(t) + A(t) — S}.

If A(t) > S, the number of bags in the queueing system increases; if A\(t) < S,
the number of bags shrinks. Figure 2 shows the bag input rate A(¢) at the
Denver airport in our model. The dashed horizontal line shows the service
rate S for 36 EDS machines operating at 180 bags/h. The solid line shows the
number of bags in the queueing system ()(¢), which increases when A(t) > S.
Approximately 52 EDS machines would be required to prevent a backlog of
bags from ever building up.

Queue Disciplines and Service Mechanisms

We analyze several mechanisms for controlling how bags are stored in the
queueing system before screening and later removed from it. These mech-
anisms have a large impact on the timely screening of bags, so choosing an
appropriate mechanism is important.

Naive Model

We first develop a simple model to give an upper bound estimate on the
number of EDS machines we need, using the assumptions:

e The hour before the peak-hour has significant traffic.

e The minimum number of machines is the number to ensure that no flight is
delayed.
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Figure 2. Bag arrival rate and number of bags in queueing system at Denver airport, assuming 36
EDS machines processing 180 bags/h.

o All bags arriving for a peak hour flight are processed in one hour.
e Bags for a flight are computed using parameters in the problem statement.

Bags arriving for peak-hour flights must be processed within a 1-h time
period. Our model suggests that 34 and 37 EDS machines are required for
airports A and B, respectively, and 55 for Denver International Airport. We
believe that these are upper bounds. Any optimization in the passenger arrival
model or the organization of people at the airport would probably achieve the
same 100% success rate but with fewer machines.

Optimal Queueing

We develop an optimal queueing system that bounds the performance of
any queueing system and compare various queueing models to this optimum.

We minimize the total amount of time by which bags are late.

Our optimal queueing system uses a priority queue: As bags arrive, they
are added to a pile. When a bag is to be processed, we pick the bag that needs
to be finished soonest.

In the Denver simulation with an optimal queue, 35 EDSs operating at
180 bags/min each are sufficient to process all bags before their deadlines. The
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queue fills with up to nearly 5,500 bags at one point (26 min of uninterrupted
processing is required to screen all of these).

Practical implementation of such an optimal priority queue at an airport
would be too complicated. Thus, we look at other less-complex queueing
systems.

Single Queue

In a single first-in, first-out queue, bags that arrive earlier are screened
earlier. This scheme could be implemented with a single conveyor belt carrying
bags from check-in to machines.

As long as bags can be screened quickly enough that a significant line never
develops, this scheme works well. We find that 47 EDS machines at Denver
suffice to deliver all bags on time; this is 34% more than required by the optimal
solution.

If bags must be finished screening at least 10 min before departure, then to
guarantee that all bags arriving at least 30 min before the flight are processed in
time, the wait must never grow to more than 20 min. In the Denver simulation,
this can be done with 38 EDS machines; approximately 0.75% of all bags arrive
within 30 min of departure and are delivered late.

This single-queue system does not perform very well under load. As the
queue increases in length, the chance of processing a bag late rises quickly.
Although most bags arrive with more than an hour that they could wait, the
few bags with less time available forces the queue length to be kept small at all
times. Many bags are processed much more quickly than necessary so that the
few bags that need rapid processing are not late. This situation is not optimal,
and it is improved by our next queueing model.

Double Queue Model

Giving preferential treatment to some bags can produce a better queueing
system. In particular, bags that arrive late should be processed more quickly.
We propose a two-queue system consisting of two first-in, first-out queues
for bags of different priority: A normal queue is used for bags that arrive
sufficiently early and a rush queue for bags that do not arrive as early.

The total throughput of the system is not increased, but bags are much
more likely to be processed before their deadline. In effect, time is borrowed
from bags that have it (by placing them in a slower queue) and given to those
that need it (by allowing them to jump ahead of bags in the normal queue),
approximating the optimal queue discipline. The number of machines can be
decreased, resulting in longer lines but without causing bags to be processed
late, and also in significant cost savings.

The double queue model requires several implementation decisions:

The method for sorting bags into the two queues (the queue discipline). The
cutoff may be fixed (e.g., all bags with less than 40 min to departure go into
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the rush queue) or vary with the lengths of the queues.

The service mechanism. Ateach time step, the number of bags to remove from
each queue must be determined. A fixed number of machines can be as-
signed to each queue; but if one queue empties, this leaves machines idle.
It is better to adjust dynamically the number of machines processing bags
from each queue. We suggest increasing the number of machines processing
the rush queue as the rush queue increases in size.

In the Denver simulation, 42 EDS machines are sufficient to get all bags
delivered on time. With 38 EDS machines, the only late bags are those that
arrive late (only 0.05% of bags). This system requires 9% more machines than
the optimal solution.

Evaluation

Adding more queues allows for more flexible scheduling of bag processing,
which may help keep more bags from being late. However, more queues mean
more parameters in the queue discipline and service mechanism, and a poor
choice may harm performance. Additionally, adding queues adds complexity,
with more potential for failures and higher labor cost. We believe that the
benefits of a many-queue system are not worth the complexity incurred.

A double-queue system provides a performance competitive with the opti-
mal system; we recommend its use. With only a few more machines than the
35 of the optimal queue, only a few bags are delivered late; and with only 20%
more machines, no bags are late.

Validation of the Model

We account for

e unfilled seats (ranging from 0% to 50% and partially depending on the size
of the flight),

e some of the passengers transfer from another flight and do not have bags
rescreened (35%), and

e distribution of checked bags from 0 to 2 per passenger.

In the Denver simulation, a total of 82,500 bags are screened in a day.

We validate our model by comparing its predictions with numbers for EDS
machines at actual airports. There are no statistics for the number of machines
at Denver, but Dallas/Fort Worth processes 55,000 bags/day with 60 EDS ma-
chines [Douglas 2002]. If scaled to the same numbers of bags processed by
Denver in our model, Dallas/Fort Worth would use 90 EDS machines. This
is larger than the number we predict is necessary. However, on initial test-
ing, EDS machines were less than half as fast as predicted (72 bags/min vs.
180 bags/min) [Clark County Department of Aviation 2002]; combined with a
safety margin, our results are in agreement with the Dallas/Fort Worth figure.
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Extensions to the Model

We present extensions to account for various modifications of the prob-
lem, with each change considered in isolation, not in combination with other
extensions.

Accounting for Error Rates

EDS machines have a false positive rate of 30% [Butler and Poole 2002]. The
result of a false positive is that the bag must be more closely examined, causing
delay for that bag and some bags to be late that otherwise would not be—so
more machines may be needed. We incorporate this false positive rate into our
model by randomly adding a fixed time (6 min) to 30% of the bags.

At the Denver airport, the effect is to slow down screening enough that
40 EDS machines (instead of 38) are required to process all but late bags in a
timely fashion. Doing so for all bags becomes nearly impossible, since some
bags arrive with less than 16 min to departure.

Incorporating ETD Machines

Although we developed our model for EDS machines, it is generic enough
to study other devices. We identify ways to incorporate ETD machines:

e ETD Machines in series with EDS machines. The problem statement relates
that up to 20% of passengers may need to have bags screened through both
an EDS and an ETD machine. We can account for this by giving 20% of bags
an extra delay of 4 min.

We assume that there is no queue between EDS and the ETD machines
following them—appropriately many ETD machines are purchased to match
the processing speed of EDS machines. In the Denver simulation, an increase
to 39 EDS machines, instead of 38, allows all but late-arriving bags to be
processed on time.

e ETD machines replace EDS machines. We can calculate the number of ETD
machines necessary to obtain the same service rate as for EDS machines and
compare the costs. Any mixture of the two machine types with the same
overall service rate will behave the same in our model; but since the cost
varies linearly as machines of one type are replaced with the other, the most
cost-effective operation will occur at one of the extremes, either all EDS or
all ETD machines.

Assuming a rate of 45 bags/min for an ETD machine (one-fourth the rate of
an EDS machine), four times as many ETDs will be needed. According to
Butler and Poole [2002], ETD machines cost less than one fifth the amount
of EDS machines to operate.
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Strengths and Weaknesses of the Model

Our model succeeds in capturing the essence of the problem and allows for
good predictions, as a result of its many strengths:

e Our model is based on real-world data. Use of data from Denver makes
it much more likely that the results from our model are realistic and not
artifacts of an artificial flight distribution, such as the isolated peak hour of
flight at airports A and B. Additionally, agreement with figures for EDS and
ETD machines currently installed at airports gives us confidence that our
model is accurate.

e Our model is flexible enough to handle other types of screening machines,
passenger arrival schedules, etc. Our model’s parameters can be varied to
account for changes in screening machinery, training of baggage screening
personnel, and so on. Since our queueing simulation takes as input merely a
list of arrival times for bags, it is also very easy to study airline flight sched-
ules at any other location, or to modify the arrival behavior of passengers.

e Our model can predict the screening capacity needed as well as predict
how the system will fail. Our model goes beyond merely predicting the
number of baggage screening machines needed to process all bags on time to
give a complete model for the flow of bags through the system. The model
can thus be used to see exactly how the baggage screening system will begin
to break down as it is pushed past its limits. This information will help
airports evaluate what margin of safety they require.

At the same time, there are aspects of our model that could be improved:

e More detailed data for machine operation could be incorporated. Our
model is rather simplistic in that all behavior is based only on the waiting
time to process bags. Including the actual time to scan a bag (not just the
queue wait time) may be better, especially for systems that are slower to
screen bags.

¢ Queue scheduling could be optimized further. Our proposed two-queue
system generally performs well, but we have not completed a detailed anal-
ysis of it nor systematically determined optimal values for its parameters.

Recommendations

Based on simulations and an analysis of our model, we are able to make a
number of recommendations:

e A safety margin can make a significant difference.

The loss of just a small percentage of the capacity of the system can make
the difference between no late bags and a significant fraction of late bags.
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This is shown in Figures 3a and 3b. After the number of machines in use
drops by about 10%, the number of late bags rises dramatically, regardless
of queueing algorithm.

Seemingly paradoxically, the optimal queueing algorithm has the highest
fraction of late bags for some values; this is because it sacrifices the percent-
age of bags on time for decreasing the average amount by which bags are
late.

Since unpredictable slowdowns or large arrivals should be anticipated, plan-
ning to handle a larger than expected number of bags is necessary to avoid
breakdown of the system. With EDS machines operational 92% of the time,
at least 8% more EDS machines should be installed than predicted as neces-
sary by our model. We recommend a further margin of safety, perhaps 10%,
to account for any other unexpected circumstance, such as unusually high
traffic.

Based on these considerations, we recommend 48 EDS machines for Denver,
10 for airport A, and 11 for airport B.

¢ Backlogs should be avoided except at peak times. The processing capacity
(bags/min) should be set higher than the arrival rate of bags at all but peak
times. Further, peak times must be fairly well isolated (to an hour or so),
or queue lengths will grow quickly to unmanageable levels. When a line
develops for scanning, it can then take a good deal of time to get back to a
no-wait situation. While our model shows that a persistently long queue can
sometimes be handled as long is it does not continue to grow, a long back-
log of bags is unstable—any event that causes the queue to grow in length
quickly causes many late bags. Thus, a persistently long queue indicates
insufficient screening capacity safety margin.

o Set stricter deadlines for passenger arrival before flights. We assume that
airlines are fairly lenient about accepting bags from passengers up to the
tinal deadline for placing them on a flight. An airline could establish a policy
wherein bags that are not checked by a certain time before the flight—say,
30 min—are not guaranteed to make the flight. With such a policy, any time
we have identified a strategy as handling all but “late bags,” all bags would
be handled in time—the “late bags” would have been rejected by the airline
outright and would not delay the flight.

e Plan for future growth in aircraft travel. Historical data shows a growth of
about 6% per year in the number of airline passengers [Metropolitan Airports
Commission 2003]. Since a screening system is a large investment, an airport
should plan with an eye to future capacity. The dip in traffic since 2001 may
be only temporary and airline traffic may return to its normal growth curve,
with a corresponding larger-than-usual increase in traffic in the next year or
two.
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e Install a baggage screening system early, and ramp up use. Unexpected
difficulties may arise with a new screening system. In addition, machine op-
erators need to become proficient. If an airport installs a baggage screening
system in advance of the federally mandated deadline, screening can begin
below 100% and increase to 100% by the deadline as problems are dealt with.

Optimal Peak-Hour Scheduling

We develop three passenger arrival models to schedule flights during the
peak hour, with three distinct passenger arrival profiles and two arrival concen-
tration distributions. The following assumptions simplify the model without
reducing the validity of the simulations.

Assumptions

e On average, passengers arrive 1.5 h before departure. The problem state-
ment says “between forty-five minutes and two hours”; although 1.5 his not
the middle of that range, it is close and makes for easier modeling.

e Passengers arrive according to a Gaussian distribution. We adopt a Gaus-
sian arrival model from Clark County Department of Aviation [2002]; such a
distribution encompasses realistic features, such as a peak in arrivals consid-
erably before flight departure. We chose a mean of 90 min and tried standard
deviations of 15 min and 30 min, implying that respectively 95% and 70% of
passengers arrive between 2 h and 1 hour before their flights.

e Flights scheduled to leave during the peak hour are uniformly spaced.
This assumption accommodates a generic runway structure.

Passenger Arrival Models

We apply three passenger arrival models to airports A and B. The peak-hour
data given in the problem statement were processed both in isolation (no other
flights during the day) and as part of a busier schedule that affects peak-hour
departures.

Random Placement Algorithm

A random placement of flights within the peak hour, according to a uniform
distribution, makes different parts of the hour look approximately the same.
We regard this algorithm as a baseline.
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Bimodal Distribution Algorithm

A bimodal distribution schedules the largest flights at the beginning and at
the end of the hour in an attempt to reduce the peak in passenger arrival. This
method is useful only when the standard deviation of arrival distributions is
low (such as ¢ = 15 min). At higher standard deviations (such as ¢ = 30 min),
the bimodal distribution converges to the distribution obtained with the greedy
algorithm below.

Greedy Algorithm

A greedy algorithm always makes the optimal local choice in the hope that
the final solution will be globally optimal [Cormen et al. 2001]. Our greedy
algorithm attempts to minimize the peak in the arrival distribution and thus
reduce a major peak in passenger arrival for peak hour flights. The following
methodology is used:

e We consider the flights sequentially from largest flight to smallest.

e At each step, the center of the passenger arrival Gaussian distribution being
considered is assigned to the minimum value among the possible centers of
the distributions.

e Fach center cannot be used for more than one distribution.

Simulation Results

We ran each of the passenger models through the optimal baggage screening
model to determine which would be best suited for airports A and B. The o = 30
cases outperformed the o = 15 cases for all arrival distributions, which implies
that having nearly all the passengers arrive for peak hour flights at the same
time backs up the queue significantly.

The procedure used to combine the given peak-hour data and the Denver
data involved:

e The peak-hour of the Denver data was identified as 10 A.M. to 11 A.M., with
a maximum rate of baggage arrival of 160 bags/min.

e The peak-hour data for airports A and B were scaled up by a factor of 3.5 to
approximate better the volume at Denver.

e The peak hour in the Denver data was entirely replaced by the airport A and
B data in their respective simulation.

Both the embedded and the isolated peak data were processed using the
optimal baggage screening algorithm.

The greedy algorithm creates a schedule that performs up to 50% better
(in terms of total late time for bags) compared to the random schedule, when
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Figure 4. Comparison of peaks of passenger arrival profiles illustrating the superiority of the
greedy schedule over the random and bi-modal distributions.

the peak hour is embedded in the relatively busy day; in isolation, a greedy
algorithm schedule was about 30% superior. The bimodal algorithm produced
a schedule that was worse than the baseline; we therefore eliminate it.

At a load below capacity of the machines, any scheduling algorithm will
do. Above capacity, some methods perform better than others. The efficiency
of a scheduling algorithm may be gauged by how long its operating capacity
is exceeded and how backed up the queue becomes.

In Figure 5, notice that the bimodal profile exceeds its capacity first and
continues to operate above capacity for the longest time. Even the intermediate
decrease in queue backup is not enough to allow the bags to be processed faster
than either the random or the greedy profiles. On the other hand, although the
random placement profile exceeds its capacity latest and again drops below
capacity earliest, its high peak leads to a significant queue backup that cannot
be cleared as quickly as in the greedy profile. This latter profile balances both
factors, giving the best result.

We used the two better algorithms to develop schedules for airports A and
B. [EDITOR’S NOTE: We omit the details of the schedules.] For both airports, the
greedy algorithm generated a better schedule. Both methods resulted in the
use of the same number of EDS machines at the airports, although the greedy
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schedule results in fewer late bags. Airports A and B require 8 and 9 EDS
machines, respectively, for 100% baggage screening and no delays due to the
screening process.

Recommendations

With normal or above-normal traffic during pre-peak hours, the scheduling
of flights during the peak hours does not matter much, because passenger
arrivals are spread out over 3 hours, reducing the impact of changes within the
peak hour.

If the peak hour has significantly more traffic than pre-peak hours, then the
greedy algorithm is better than either the random or the bimodal distributions.

Review of Future Technologies

Current technology approved by the FAA is highly limited and extremely
expensive.

EDS machines produce a three-dimensional image of the contents of a bag,
allowing observation of hidden materials, zoom, and rotation of perspective
to focus on suspicious objects. Unfortunately, EDSs use a powerful X-ray
that requires screening to protect operators, is very expensive, and—due to
the high sensor rotation rate required to resolve images—is limited in speed.

ETD machines use mass spectrometry to detect trace levels of explosives. The
sample collection takes much longer and has much higher labor require-
ments than the EDS, with a critically high false-negative rate of 30% for a
surface sample and 15% for an open-bag sample. This poor detection rate is
due to the uneven concentration of explosive residues within a bag [Butler
and Poole 2002].

Few alternatives have been developed as fully as EDSs and ETDs, but some
appear very promising:

e Coherent scatter is slower than EDS (60-240 bags /h), but with a near perfect
detection rate and an order of magnitude fewer false-positives, it is still
relatively efficient [Butler and Poole 2002].

e Dual-energy X-ray has a high false alarm rate of 20% [Singh and Singh 2003]
but can process 1,500 bags/h. These systems are being installed in London
and other European airports and await certification in the U.S. [Butler and
Poole 2002].

e Stereoscopic tomography, slightly different from the computed Tomogra-
phy used in EDSs, scans 1,200-1,800 bags/h and is being tested for accuracy
and false alarm rates [Singh and Singh 2003].
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e X-ray diffraction uses unique diffraction patterns of scanned materials to
determine their chemical composition. Current experiments show a nearly
perfect detection rate and extremely small false-alarm rate [Singh and Singh
2003]. Throughput rates and cost will likely be similar to that of normal
X-ray scanners, making this a promising technology.

e Neutron-based detection is used in several developing techniques:

Thermal neutron analysis (TNA) can detect nitrogen levels particular to
many plastic explosives but has limited sensitivity, a high false-alarm
rate due to background nitrogen levels, and is at least as expensive as
an EDS, making it a less promising candidate.

Fast neutron analysis (FNA) is similar to TNA except that it can also detect
oxygen, carbon, and hydrogen levels, allowing greater sensitivity and
accuracy. However, the high-energy neutrons used create large amounts
of noise, making information difficult to detect.

Pulsed fast neutron analysis (PFNA) solves the noise problem but requires
a collimated, pulsed energetic neutron beam, which is hard to make and
tends to be unsafe and expensive.

Pulsed fast thermal neutron analysis (PFTNA) usesashorter pulse. It mea-
sures both thermal and fast neutron information. Portable models for
landmine, unexploded ordinance, and narcotic detection have very high
accuracy levels [Singh and Singh 2003].

¢ Quadrupole resonance uses magnetic resonance techniques to identify the
composition of the scanned object. Every material releases a unique signal;
those corresponding to explosive compounds can be isolated and identified.
Machines using this technique are under construction; the manufacturer
predicts that this technology will be faster (300 bags/h) and more accurate
than both EDS and ETD [Quantum Magnetics 2002].

e Millimeter wave imaging is a noninvasive technique that detects short
wavelength electromagnetic radiation from scanned objects. While this ap-
pears to work well for locating weapons concealed about a person, it does
not seem able to distinguish explosive materials from inert ones and is thus
not useful for baggage scanning [Homeland Security Research 2002]. Mi-
crowave imaging is similar to millimeter wave imaging.

Conclusion

Frankly, we’ve tried everything else ... . We’ve put up more metal
detectors, searched carry-on luggage, and prohibited passengers from
traveling with sharp objects. Yet passengers still somehow continue to
find ways to breach security. Clearly, the passengers have to go.

—The Onion (16 October 2002)
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Since excluding passengers is unrealistic, we study the more practical tech-
nique of scanning baggage. Our results are:

e We develop a model that predicts the behavior of a queueing system for
baggage in an airport security screening system and allows prediction of de-
lays caused by the system. This model is then expanded to include multiple
types of screening machines and false-positive results.

e We evaluate our model against real-world data for Denver International
Airport and for the data given for airports A and B.

e Using our model, we predict the optimal number of Explosive Detection
System (EDS) or Explosive Trace Detection (ETD) machines to use at several
different airports and provide other recommendations for the implemen-
tation of a security screening system. For Denver, we recommend 48 EDS
machines; at airports A and B we recommend 10 and 11 machines, respec-
tively. We also compare these figures to actual figures for EDS use at the
Dallas/Fort Worth Airport.

e We study how the distribution of flights during the peak hour of the day
affects the efficiency of the system. We propose a greedy algorithm for
optimally scheduling flights.

e We review promising technologies for future security screening machines.

Our evaluation of the requirements for 100% baggage screening suggests
that such high security goals are cost-ineffective, so research into alternative
technologies and screening systems is needed.
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