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Kinematics-Based Vehicle Trajectory Optimization for
Obstacle Avoidance and Goal Satisfaction

Mulang Shi

Abstract

The electric bicycle is one of the most important means of transportation in China, and it
has a huge number of electric bicycle users. However, there are a lot of deaths caused by
electric bicycle traffic accidents every year. In this paper, we design a driver-assisted electric
bicycle and motion planning based on the iLQR algorithm that can avoid obstacles. The
study provides a solution for the future generation of electric bicycles that can respond to
emergencies and reduce accidents to improve travel safety.
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1 Introduction

The electric bicycle is one of the most frequently used transportation methods in China.
In urban areas, people commonly use the electric bicycle to commute to work or travel short
distances from home to metro and bus stations. According to China Statistical Yearbook
[1], the number of electric bicycles produced in China reached 29.7 million in 2020, and
the whole country has a total number of 300 million electric bicycles in use. However,
due to the smaller size and fewer safety protections compared to other on-road vehicles,
traffic accidents are more likely to cause severe safety issues for electric bicycles riders. An
overwhelming amount of accidents related to electric bicycles have been recorded. In 2019,
traffic police in Zhejiang Province handled over 6.1 million cases of non-motorized vehicle
violations on the roads. Moreover, in the first quarter of 2020, traffic accidents involving
electric bicycles in Zhejiang province accounted for 29.1% of deaths due to traffic accidents
involving electric bicycles. As a common means of transportation, it is important to ensure
the safety of electric bicycle driving. This project aims at developing safe and reliable motion
planning algorithms for autonomous electric bicycle driving. The algorithm can be applied
to a variety of autonomous driving or assisted driving systems to improve travel safety and
reduce accidents.

A reliable and efficient motion planning algorithm is the core for autonomous driving,
which can solve the problem of finding feasible moving trajectories by considering vehicle
kinematic models while simultaneously allowing the vehicle to safely traverse around obsta-
cles from the initial state to the target state. A typical planning module receives the dynamic
external environment structures including obstacles, lanes, pedestrians, traffic lights, and
other objects. Then it generates a trajectory with the ideal driving quality under desired
conditions that satisfy safety and feasibility constraints. Researchers have studied motion
planning for several decades, but designing an ideal trajectory for autonomous vehicles can
still be a challenging task. The outcome trajectory should simultaneously meet the following
requirements:

• Achieve real-time computing and interaction with the dynamic environment, as well
as rapid response to emergencies.

• Have the ability to handle complex conditional constraints and vehicle kinematic mod-
els.

• Generate plans in a spatiotemporal domain to handling static and dynamic obstacles.

Current motion planning algorithms are traditionally grouped into three types: graph-
search-based methods, sampling-based methods, and optimization-based methods [2]. The
graph-search-based methods usually refer to A* [3] search, Dijkstra [4] search, and D* [5]
search. In graph-search-based planners, the main idea is to search and traverse in the state
space, beginning with the starting point A and ending with the target point B. The algo-
rithms of graph-search based for accessing the different states in the state space provide a
globally optimal solution, but have high requirements for memory and computational speed,
and are inefficient in dealing with dynamic obstacles. The sampling-based methods are typ-
ically used the Rapid-Exploring Random Tree (RRT) [6] and the Probabilistic Roadmap
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Method (PRM) [7]. This method can search the high-dimensional space quickly and effi-
ciently, and find a planning path from the starting point to the target point by directing the
search to a blank area through random sampling points in the state space. However, the
disadvantage of sampling-based methods is that if the parameters of the planner are not set
reasonably (e.g., too few search limits, too few sampling points, etc.), the solution may not
be found. In addition, graph-search-based and sampling-based methods could potentially
lead to non-smooth trajectories and also suffer from computational efficiency due to a large
discrete space.

The numerical optimization-based methods aim at maximizing or minimizing a function
that is constrained by practical conditions. But the nonconvex constraints make the problem
complex and super challenging to solve. In the existing literature, people have developed
mature and practical optimization algorithms to solve motion planning problems in practice.
First, Linear Quadratic Regulator (LQR) can gain the optimal control law with state linear
feedback, making it easy to constitute closed-loop optimal control. To take the nonlinear
dynamics and nonconvex cost function, the Iterative Linear Quadratic Regulator (iLQR) [8]
[9] is employed to effectively deal with optimal control problems of nonlinear dynamics and
nonconvex cost functions. Due to its high efficiency, iLQR is an ideal candidate to solve
real-time motion planning problems with low latency.

Figure 1: Electric bicycle with autonomous driving and self-balancing function.

In this paper, we implement an iLQR-based motion planning algorithm for autonomous
vehicles and tested this motion planning on our designed self-balancing autonomous bicycle
in Figure (1), which can increase the safety of vehicles by avoiding obstacles and following
desired driving behaviors. The developed iLQR motion planning algorithm can produce
safe and reliable trajectories with locally optimal convergence certificates and deal with
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complicated scenarios with high efficiency. The use of this method in assisted driving systems
is expected to reduce traffic accidents while saving people’s driving effort and improving social
efficiency.

2 Existing Methods for Motion Planning

Motion planning involves a series of control decisions, and is usually divided into high-
level routing and low-level trajectory optimization [10]. In high-level routing, plans are often
calculated by offline maps before the vehicles start. During the movement of the vehicle, the
low-level trajectories are obtained by sensing the environment around and generating the
local maps thus allowing the vehicles to deal with the dynamic obstacles. Overall, motion
planning methods can be divided into three types: graph-search-based planners, sampling-
based planners, and optimization-based planners.

2.1 Graph-Search-Based Planners

The essence of graph-search-based planners is to find how to get from the starting point
A to the target point B in state space. In this space, the motion planner relies on the known
environment map and obstacle information to construct the trajectories from starting point
to the target point, which has two methods: depth-first and breadth-first.

2.1.1 Dijkstra Algorithm

Figure 2: Dijkstra algorithm is applied for global path planning in order to optimize taxi
drivers’ driving routes in [11], so as to improve operational efficiency.

In Dijkstra algorithm, the total movement cost of each point from the initial point
needs to be calculated. The priority queue structure is also needed for this algorithm which
stores all the nodes to be traversed while ranking them according to their cost. During the
operation of the algorithm, the next node to traverse is selected by the node with the lowest
cost in the priority queue. Until the target point is reached.
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Dijkstra algorithm uses a greedy strategy [12], creating an array range, the i-th range
denotes the distance from the starting point to point i. In the beginning, all points are
initialized to positive infinity, except for the points directly adjacent to the starting point.
Create a variable s. The points in s indicate the points for which the shortest path has been
found. At first, there are only starting points in s. After finding the minimum value of the
point in the range matrix that has not been added to s. and adds that point to s. Then we
need to examine which path is shorter between the path through the newly added point to
the remaining points and the original path, and if the new path is shorter, we need to update
the value of the range array. Then find the minimum value of the points in the range matrix
that have not been added to s. Repeat the above operation until s contains all the points in
the graph. Dijkstra algorithm is applied for global path planning in order to optimize cab
drivers’ driving routes in [11] as shown in Figure (2), so as to improve operational efficiency.

2.1.2 A-Star Algorithm (A*)

In order to solve the search efficiency problem of the Dijkstra algorithm, the A* algo-
rithm guides the search process with the help of a heuristic function.

Specifically, the basic idea of A* means g(x) is the cost of the initial point to point x,
and h(x) is the heuristic function part, which implements the calculation of the expected
cost from the target point to the point x. The A* algorithm evaluates the initial point to
the target point. The main loop checks the node x with the smallest f(x) at each execution,
where f(x) = g(x) + h(x).

The A* algorithm is often applied in classical motion planning. Its heuristic search
feature can reduce the computation time, but its results are usually discontinuous and the
heuristic rules are not easily obtained directly. Figure (3) shows the A* algorithm adopted
by Leedy and others, in which a local path is built for the autonomous car "Rockey" for the
2005 DARPA Urban Challenge.

Figure 3: A* algorithm adopted by Leedy and others, in which a local path is built for the
autonomous car "Rockey" for the 2005 DARPA Urban Challenge. [13]
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2.2 Sampling-Based Planners

The sampling-based planner can quickly and efficiently explore the high-dimensional
space by randomly sampling the points in the state space and directing the search to the
empty area to produce a trajectory from the initial point to the target point. However,
the quality of the paths obtained by this algorithm is mediocre, and they are usually not
optimal.

The Rapid-Exploring Random Tree (RRT) algorithm is often adopted to handle high-
dimensional motion planning problems with high efficiency and accuracy, and is often applied
to generate robot arm trajectories or aircraft motion planning.

The basic idea of the RRT algorithm is to rapidly expand a group of tree-like paths to
explore most of the space, waiting for an opportunity to find a feasible path. An initial point
is chosen as the root of the tree, and child nodes are randomly generated and distances are
recorded. The random nodes are usually distributed and generated equally in all directions
when no obstacles are encountered. When the generated children nodes encounter the target
point, a feasible path to the target point is obtained [14].

Figure 4: Find a feasible route from the starting point to the target point by using the RRT
algorithm has shown in [15] and [16].

3 Iterative Linear Quadratic Regulator Algorithm

Motion planning is essentially a model-based optimal control problem, which guarantees
the solution satisfies vehicle kinematics and is critical to real-time control in real time. Linear
quadratic regulator (LQR) is very efficient to solve those problems, but strictly relies on linear
dynamics and quadratic cost functions. However, many real-life engineering problems have
nonlinear dynamics or cost functions. Therefore, LQR cannot be directly applied to tackle
those nonlinear problems. To address the challenge of nonlinearity in the optimal control
problems, Iterative linear quadratic regulator (iLQR) has been proposed to achieve a local
solution in high efficiency.
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3.1 Discrete-Time Dynamics

The system with discrete-time dynamics by function f

xt+1 = f(xt,ut), (1)

describes the dynamics transition from time t to t+ 1 given the control at time t. The state
xt and the control ut means the corresponding state and control values at time t. Let the
state sequence X ≡ {x0,x1...,xN} and the control sequence U ≡ {u0,u1...,uN−1} satisfy
Equation (1) for a fixed period of time horizon.

3.2 Cost Functions

The running costs c and the final step cost cf is the sum of the total cost C(x0,U),
incurred from the starting state x0 and the control sequence U for a fixed time horizon:

C(x0,U) =
N−1∑
t=0

c(xt,ut) + cf (xN). (2)

Similar to the reward in reinforcement learning (RL), the optimal control problem defines
the cost function with the same goal. RL maximizes the cumulative reward, while optimal
control minimizes the cumulative losses.

U∗(x) ≡ arg min
U

C(x,U), (3)

s.t. x0 = xinit. (4)

Let the partial sum of costs from t to N be the cost-to-go Ct at time t,

Ct(x,Ut) =
N−1∑
j=t

c(xj,uj) + cf (xN). (5)

The value function at time t is the cost-to-go function Ct given the optimal control
sequence

V (x, t) ≡ min
X,U

Ct(X,U), (6)

where V (x, N) = cf (xN). The dynamic programming principle reduces the entire mini-
mized control sequence to a single controlled minimization sequence that proceeds backward
in time

V (x, t) = min
u

[c(x,u) + V ′(f(x,u), t+ 1)] . (7)
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3.3 Backward Path

In iLQR the discrete-time dynamics are expanded to the first order and cost is expanded
until the second order. Differential dynamic programming (DDP) is a very similar technique,
and the only difference is DDP expands the discrete-time dynamics to the second order. In
this case, the integration of Equation (1) is performed for a given U . Next, a second-
order Taylor expansion is performed on function Q and the local solution of Equation (7) is
calculated. Define the argument in Equation (7) as a function of perturbations of the t-th
nominal (x,u) pair:

Q(δx, δu) = c(x + δx,u + δu, t)− c(x,u, t) + V (f(x + δx,u + δu), t+ 1)− V (f(x,u), t+ 1)
(8)

and expand it to the second order

≈ 1

2

 1
δx
δu

T  0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu

 1
δx
δu

 . (9)

The expansion coefficients are

Qx = cx + fTx V
′
x, (10)

Qu = cu + fTu V
′
x, (11)

Qxx = cxx + fTx V
′
xxfx + V ′x · fxx, (12)

Quu = cuu + fTu V
′
xxfu + V ′x · fuu, (13)

Qux = cux + fTu V
′
xxfx + V ′x · fux. (14)

As for the second half of the second-order derivative of f , it is not present in iLQR, but
it is present in DDP. From this point, we can also see that the DDP update is a full Newton
step, while the iLQR is a Gauss-Newton step.

Comparing the minimization of Equation (9) with δu, we obtain

δu∗ = arg min
δu

Q(δx, δu) = −Q−1uu (Qu +Quxδx) = Kδx + k. (15)

This is a local linear feedback policy with

K = −Q−1uuQux, (16)
k = −Q−1uuQu. (17)

Substituting this policy into Equation (9), we can obtain a quadratic model of the value
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of time t.

∆V (t) = −1

2
QuQ

−1
uuQu, (18)

Vx(t) = Qx −QuQ
−1
uuQux, (19)

Vxx(t) = Qxx −QxuQ
−1
uuQux. (20)

3.3.1 Regularization Term

The Newton iteration has two drawbacks. First, the Hessian matrix of the objective
function at a point is non-positive definite, resulting in the Hessian matrix not being invert-
ible or the direction of the computed update being the direction that increases the objective
function. So the Newton iteration may not converge or even fail due to numerical issues
when the Hessian matrix is not positive definite. Secondly, when the linearization of dy-
namics is far from the lowest point or the second-order approximation of cost function is not
accurate enough, it is also likely to have convergence issues. The gradient descent method
could be another candidate. For one thing, there is no need to compute the Hessian matrix
for the gradient descent method. For another, it does not matter even if it has a distance
from the lowest point. But the disadvantage of gradient descent is that it is computationally
expensive, and might require orders of magnitudes more iterations.

Therefore, the Levenberg-Marquardt (LM) [17] algorithm is proposed, which combines
the advantages of both by adjusting the LM parameter µ larger or smaller so that the
algorithm is biased towards gradient descent or Newton’s method. The first term is weakened
when the LM parameter is large, and reverts to the original Newton’s iteration when the
LM parameter µ = 0.

Quu = cuu + fTu (V ′xx + µIn) fu + Vx · fuu, (21)
Qux = cux + fTu (V ′xx + µIn) fx + Vx − fux. (22)

In order to decrease t , all equations of the backword path need to be iterated. If
encountering a non-PD Quu, µ is increased and the backward path should be restarted. µ is
decreased if successful.

3.4 Forward Path

After running backward pass on state δxt = xt − x̂t and control δut = ut − ût, where
x̂ is the trajectory obtained from the previous iteration. Then run forward pass with real
nonlinear dynamics and ut = Kt (xt − x̂t) + kt + ût. Keep update x̂t and ût based on states
and controls in the forward pass. It should be noted that the forward is interacted with the
real nonlinear system to get the real trajectory, not with the linearized model.

9
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3.4.1 Line Search

The Newton method iteration process might have overshoots shown in Figure (5). Our
current iteration locates at point A, and the function in red is our second-order approximation
to the function. The next step of the Newton iteration is to go to the lowest value under
the current approximation, which is the location of point C, but this location deviates from
the true lowest point B, then it overshoots. However, this position deviates from the true
minimum at point B, and it overshoot. The cost is likely to rise instead of fall and does not
converge when the second-order approximation deviates too much from the real situation.
The common solution is to perform a line search, adding a linear factor α in front of the
updated amount and reducing updated the step size that makes the true function value
reduced by a certain amount.

Figure 5: Using the Newton iteration method may lead to overshoot. The position obtained
by the current iteration is point A. The red function is our second-order approximation to
the blue function, and the Newton iteration goes next to the position of the lowest value
under the current approximation, which is the position of point C. But this position is off
from the true lowest point B.

In iLQR, the forward path is crucial, and the number of updates is related to the speed
of convergence. As in Equation (23) by adding a linear search factor α for backtracking to
the control law term k.

û = u + αk + K(x̂− x). (23)

The α decreases from 1 to a smaller value close to 0. When α = 0 is not updated, the
trajectory does not change.

4 Motion Planning for Obstacle Avoidance and Driving Rule Sat-
isfaction

We utilize iLQR algorithm to enable obstacle avoidance and driving rules satisfaction
features. This motion planning algorithm strictly follows vehicle dynamics, and is able to
handle complex scenarios with specific safety requirements.
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4.1 Discrete-Time Dynamics Function

In our vehicle trajectory optimization problem, we have 8 states (x, y, θ, v, φ, at, an, s)
and 2 controls (dcurvdt, datdt). State x and state y are the x-axis and y-axis coordinates of
the vehicle, state θ is the yaw angle of the vehicle, and state v is the speed of the vehicle.
State φ is the curvature, which is the derivative of θ with respect to s (∂θ

∂s
). In addition,

state s is arc length, which calculates the length of traveled distance. at is the tangential
acceleration and the an means the normal acceleration. The control dcurvdt is the derivative
of the curvature over time (∂curv

∂t
). The control datdt is also called the jerk, which is the

derivative of tangential acceleration over time (∂at
∂t
). Specifically, given state and control at

time t, the next state at time t+ 1 follow the following dynamics equations:

xt+1 = xt + vt cos θtdt, (24)
yt+1 = yt + vt sin θtdt,

θt+1 = θt + vtφtdt,

vt+1 = vt + at,tdt,

φt+1 = φt + dcurvdtt ∗ dt,

at,t+1 = at,t + datdtt ∗ dt,

an,t+1 = v2t+1φt+1,

st+1 = st + vtdt.

4.2 Cost Function

The cost function represents a parametrized driving goals. In order to achieve specific
driving conditions such as avoiding obstacles, following lane centers, and driving comforts,
we design the corresponding cost function terms.

4.2.1 Obstacle Cost

To avoid obstacles in the lane, we design the obstacle cost function. The function obtains
the obstacle cost by multiplying the cost weight with the square of the distance between the
vehicle and the obstacles,

obstacle cost = weight ∗ [distance(vehicle, obstacle)]2. (25)

4.2.2 Lane Center Cost

The vehicle is preferred to drive near the lane center if that is safe. The lane center cost
will be penalized if the vehicle is away from the lane centerline,

lane center cost = weight ∗ [distance(vehicle, lane center)]2. (26)
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4.2.3 Progress Cost

In order to reach the target location, we need the vehicle to move towards the target
position. We will get higher cost if we are far away from the target pose,

progress cost = weight ∗
[
(x− goalx)

2 + (y − goaly)
2
]
. (27)

4.2.4 Control Cost

The control cost handles the driving comfort. We want to avoid high control values that
could result in flaky behaviors,

control cost = weight ∗ dcurvdt2 + weight ∗ datdt2. (28)

4.2.5 Bound Violation Cost

Driving on public roads requires following traffic regulations. The bounds violation cost
regulates the vehicles to comply with the specified hard bounds while driving, such as speed
limits, and will apply a cost if the vehicle violates desired operation bounds.

bounds violation cost = weight ∗ [bounds violation values]2 . (29)

In the iLQR algorithm, in order to get the optimal path while satisfying the driving
conditions mentioned above, we minimize the summation of all costs above.

4.3 Numerical Example: Motion Planning for Obstacle Avoidance and Goal
Satisfaction

To illustrate the performance of our motion planning algorithm, we want our au-
tonomous bicycle to drive at simulated a road with obstacles and lane centerline. The
goal of the vehicle is to travel from the left starting position to a goal position along the road
center if possible, and get around the obstacles safely with comfort. The obstacle may block
part of the lane, so the planned trajectory needs to get around the obstacle with a safe buffer
distance, while keeping the vehicle along the lane center as much as possible. As shown in
Figure (6), the blue and green regions are obstacles, and the gray regions illustrated the safe
buffer distance we want to keep away from the obstacle. We implement the motion planning
algorithm in TensorFlow and obtained the desired trajectory as below.

Figure 6: Test motion planning by simulating the actual environment.

The final result is shown in Figure (6), the x-axis is the longitudinal direction of the
road and the y-axis is the lateral direction of the road. The dotted line in the center of the
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road is the lane center, and the red dotted trajectory is the optimal path calculated by our
motion planning algorithm. We successfully drive around the obstacles with comfort and
following closely to the lane center if possible.

5 Broader Impact

Besides implementation the motion planning algorithm, we have been building an au-
tunomous electric bicycle product. In January of 2021, we spent six months designing the
model of an electric bicycle with autonomous driving and the self-balancing function shown
in Figure (7).

Figure 7: The autonomous self-balance electric bicycle.

The electric bicycle is controlled by the Nvidia-Jetson-Xavier-NX development board
together with the STM32F103RCT6 development board. The Xavier development board
provides the future trajectory of the vehicle, and the STM32 development board controls
the bicycle balance in real-time through a serial-level PID algorithm while receiving and
executing the trajectory and control sequences sent from the Xavier development board.
The depth camera in front of the bike and the LIDAR above the bicycle collect information
about the surrounding environment and send it to the Xavier development board through the
serial port. After receiving the trajectory and control sequences from Xavier, the STM32
development board will substitute the data into the serial PID calculation to ensure the
bicycle’s balance and drives the bicycle to the target point by controlling the handlebar and
throttle motors. In Figure (8), the handlebars and the motor controlling the throttle are
connected to the STM32 development board in the control center at the back of the bike via
blue wires; the depth camera at the front of the bike and the radar above are connected to
the Xavier development board via yellow wires. Below the board is a 24V5AH Li-ion battery
to provide power for the bike drive and computing. The communication between Xavier and
the STM32 development board is done through the red wire using CAN protocol.
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Figure 8: The structure of autonomous electric bicycle.

In the future, we will adopt the control systems of the autonomous self-balance bike to
the common electric bicycle in China. The assisted driving system helps drivers to reduce
emergency accidents and improve driving comfort at the same time.

6 Conclusion

In this paper, we successfully utilize iLQR motion planning for autonomous electric ve-
hicle driving. The developed iLQR motion planning algorithm can produce safe and reliable
trajectories with locally optimal convergence certificates and deal with complicated scenarios
with high efficiency. Due to these features, iLQR is an ideal candidate to solve real-time
motion planning problems. The use of this method in assisted driving systems of electric
bicycles or other vehicles is expected to reduce traffic accidents while saving people’s driving
effort and improving social efficiency.
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Figure 9: The demo of bicycle using iLQR motion planning.
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