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Abstract

3D vision plays a fundamental role in many engineering and medical fields. Stereo-vision is one
of the most popular method, which reconstructs depth information from binocular images. Camera
calibration is crucial for the reconstruction geometry accuracy.

Conventional pinhole camera model represents each pixel as a ray through the optical center and
the pixel. In reality, due to the manufacture error, the optical lense and the digital sensors have various
distortions, the physical camera rays may not converge to a single point. Conventional calibration
method, such as Zhengyou Zhang’s algorithm, uses limited number of parameters to describe the
intrinsic distortions, such as effective focal length, slant parameter, principle center and radial and
tangential distortions, which are incapable of describing the complicated distortions or more general
cameras, such as cell phone cameras and Lytro light field cameras.

Recently, the light field camera becomes popular, which associates each pixel with a ray in the
physical world, and there is no optical center for the rays. This model is able to describe all types of
complex intrinsic distortions, and represent any types of cameras. Furthermore, a light field camera
can synthesize virtual pinhole cameras. But, so far there is no calibration algorithm for light field
camera.

This work develops a practical method for light field camera calibration, which measures each
camera ray individually based on Principle Component Analysis (PCA) and using a simple set up
(including a linear rail, a LCD panel and a laser pointer), and stores the representations of all the
rays. Comparing to conventional calibration method, the proposed method greatly simplifies the
optimization process, and improves the precision.

The proposed calibration method is applied for a stereo-vision project to scan geometric objects
in the real world. Our experimental results demonstrate that the proposed calibration algorithm can
handle complicated geometric or textural features with high precision and outperforms the conven-
tional calibration method.

keywords — stereo-vision, camera calibration, pinhole, ray, principle component analysis, least square

1 Introduction

3D vision plays a fundamental role in many fields, such as medical imaging, industrial inspection, 3D facial
recognition in public security and recently for autopilot.

Stereo-Vision and Auto-pilot Stereo vision aims at recovering 3D geometry from a pair of 2D images
captures from cameras in different view angles. Stereo-vision is the center for computer vision for decades, and
becomes more and more important recently, especially for auto-pilot.For example, Tesla, refresh the definition
of driving cars should by human. Beside of the traditional pilot system [2], Tesla also include a new auto-pilot
system that free peoples hand. The CEO of Tesla, Elon Musk claim the new Auto-pilot would introduce a new
method of detecting objects that enhance the accuracy of AI. In practice, this new system also presents an ideal
dodging ability.In the recent Q1 2021 report, Tesla provide an incredible number of car accident during he 1st
quarter of 2021:”In the 1st quarter, we registered one accident for every 4.19 million miles driven in which drivers
had Autopilot engaged. For those driving without Autopilot but with our active safety features, we registered
one accident for every 2.05 million miles driven.”

[1]Referring back to the goal of Tesla,”to be the safest cars in the world”.
In order to improve the safety of auto-pilot and improve the quality of the services based on 3D-vision

techniques, it is crucial to improve the accuracy and efficiency of stereo-vision algorithms, especially camera
calibration.
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(a). Triangulation principle (b). Reconstructed point cloud

Figure 1: Stereo-vision triangulation principle for reconstruction. The left and right camera images are
I1 and I2, the optical centers are O1 and O2 respectively.

Figure 2: A Tesla car accident caused by auto-vision error

Light Field Camera Recently, light field camera [13, 12, 7, 3, 19, 16] becomes more and more popular.
In principle, a light field camera captures the intensity of all the rays in the physical space, which gives much
more comprehensive information about the object. The light field includes the pinhole camera images from all
possible view angles. Therefore it allows users “shoot first, and focus later”. Furthermore, light field camera has
great potential for visualization, virtual reality and augmented reality applications. However, there is no mature
calibration method for light field cameras, therefore there is no stereo-vision system based on this type of camera.

Challenges Conventional stereo-vision methods are based on pinhole camera model, which associates each
pixel with a ray and all the rays converge to the single optical center. Hence the model only uses a few parameters
to describe the relative position and orientation of the camera, and the intrinsic distortions, including effective
focal lengths, slant parameter, principle center and radial and tangential distortions. However, in reality, many
types of cameras can not be modeled as pinhole cameras, such as the cell phone camera and the Lytro light field
camera, furthermore, due to the manufacture inaccuracy, the distortions of optical lenses and digital sensors are
very complicated. Conventional pinhole camera model can not fully describe all the distortions. Furthermore,
conventional calibration process is inaccurate due to the distortion of the calibration target board, the sparsity of
the feature points on the board and so on. Theoretically, conventional camera calibration algorithm is equivalent
to a non-linear optimization problem, which may get stuck at the local optima. Therefore the conventional
calibration method doesn’t meet the requirements in many practical applications nowadays.

Our Solutions In order to tackle these difficulties, in this work, we adopt the more advanced light field camera
model and develop a calibration algorithm for it.

The light field camera model treats a camera as a set of rays, each pixel represents a ray in the physical world.
These camera rays unnecessarily merge to a single point, therefore the concept of optimal center is unnecessary.
The camera rays can be interpolated and reorganized to synthesize pinhole cameras and generate images with
variant focal lengths.
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The calibration of a light field camera means to measure each individual ray associated with the corresponding
pixel. Each ray requires 4 parameters to describe, and the total number of calibration parameters for a light field
camera is 4 times the number of pixels. Therefore there could be millions of parameters for a light field camera,
much more than that of a pinhole camera. Hence a light field camera can handle all types of distortions and
greatly improves the accuracy.

As shown in Fig. (3), we design special mechanical device for the calibration purpose. We mount our stereo-
camera system on a linear rail, and use a LCD panel as the calibration target board. By displaying special
patterns on the LCD, we can obtain the intersection point between the camera ray with the plane of the LCD
panel.By sliding the camera system, or equivalently the LCD panel along the rail, we obtain multiple intersection
points of each camera ray with different LCD panel planes. We compute the camera ray using the Principle
Component Analysis. Then the calibrated camera system is applied for capturing 3D shapes with complicated
geometry using stereo-matching algorithm.

Contributions In this work, we propose a novel algorithms for light field camera calibration, which improves
the accuracy for stereo-vision. Our contributions can be summarized as follows:

• Replace the pinhole camera model by a light field camera model in order to represent complicated distortions
and improve the system accuracy.

• Develop a light field camera calibration algorithm based on Principle Component Analysis. The theoretic
formulation is much simpler than conventional camera calibration model.

• Design the hardware setup for the calibration method, which includes a linear rail, a laser pointer and a
LCD panel. The conventional calibration target board is replaced by the LCD panel to reduce the physical
distortion and increase the number of markers;

• Apply the proposed calibration algorithm for stereo-matching and geometric reconstruction. The experi-
mental results demonstrate the system can capture real objects with complicated geometric and textural
characteristics, and improves the reconstruction accuracy.

The paper is organized as follows: in section 3, we review the conventional pinhole camera model and the
classical Zhang’s calibration algorithm; in section 4, we introduce our novel ray field camera model and the
calibration algorithm; in section 5, we explain the stereo-matching and geometric reconstruction algorithm. The
experimental results are reported in section 7, and the work is concluded in section 8.

2 Previous Works

Camera calibration refers to the problem of finding the mapping between the 3D world and the image plane.
There has been many research works on camera calibration [8]. In most of the algorithms, some set of features are
extracted from images, the intrinsic camera parameters as well as camera pose and orientation (extrinsic camera
parameters) are estimated by a minimization of an over all cost function.

In many existing calibration techniques, good estimates for external and internal camera parameters are first
obtained by a pinhole camera model neglecting lens distortion. Then distortion calibration is performed while
holding the other parameters fixed [4, 10, 21]. Many calibration techniques use both nonlinear minimization and
closed form solutions as in [9, 5].

Some methods [4, 5] extract the 3D line segments from the images, by the fact that protective transformations
preserve lines, the linear constraints can be added to the energy, and the camera parameters can be estimated
by the optimization. Some methods [15] rely on point correspondences. Given a set of 3D points, the associated
epipolar and trilinear (among three cameras) constraints are arranged into a tensor, the distortion parameters
can be optimized by minimizing the reprojection error in an iterative manner. The method in [6] a directly finds
the camera calibration parameters by incorporating lens distortion. Recent variational approach [18] proposes a
joint region-based image segmentation and simultaneous 3D stereo reconstruction technique.

Most existing methods are based on pinhole camera model, and use Taylor expansions to approximate the
non-linear lens distortions. Unfortunately, the light field camera can not be covered by these mathematical models,
therefore can not be calibrated by these algorithms either. This motivates us to develop the current algorithm to
calibrate more general cameras.

3 Pinhole Camera Model and Calibration

Stereo-vision and Triangulation Principle As shown in Fig. (1), stereo-vision systems mimic human
eyes to reconstruct 3D geometry from two planar images captures by the left and the right eyes. Our stereo-vision
system is shown in Fig. (3), two gray scale Flir cameras and one IDS color camera are mounted on a koolehaoda
camera rail, and the camera rail is mounted on a linear stage. In order to help stereo-matching, structured light
techniques are commonly applied as well. As shown in Fig. (3), a digital projector is added to the system, which
projects structured lights with special patterns to improve the matching efficiency and accuracy. As shown in
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Figure 3: Our experimental stereo-camera system withmultiple cameras and a digital projector.

Fig. (1), both gray scale cameras capture the images of the 3D object simultaneously. Each pixel in the left image
is matched to a pixel in the right image. Each pixel represents a ray through the optical center and the pixel.
Two rays intersect at a 3D point on the object. This is the so-called triangulation principle for stereo-vision.
For the purpose of geometric reconstruction by stereo-matching, the cameras need to be calibrated to obtain
corresponding geometric relations and internal distortions. For example, the precision of the intersection point
depends on the geometric accuracy of the camera rays, which are obtained by the calibration process. In the
following, we briefly review the mathematical model of pinhole camera and the conventional Zhengyou Zhang’s
calibration method [21].

Xw

Yw

Zw

p

Xc

Yc

Zc

(u, v)
(u0, v0)

u

v

f

Figure 4: Pinhole camera model.

3.1 Pinhole Camera Mathematical Model

Conventional cameras are modeled as a pinhole camera, where each pixel captures the light coming through a
spacial ray, and all the rays intersect at a unique common point, the so-called optical center.

World to Camera Coordinate Transformation Fig. 4 shows the mathematical model of a pinhole
camera. (Xw, Yw, Zw) is the world coordinates, (Xc, Yc, Zc) the camera coordinates, (u, v) image coordinates.
The optical center is the origin of the camera coordinate frame. A point p in the world coordinate system is
(Xw, Yw, Zw), in the camera coordinate system is (Xc, Yc, Zc), then the transformation from the world coordinates
to the camera coordinates is given by  Xc

Yc
Zc

 = R

 Xw
Yw
Zw

+ T. (1)

where R is the rotation matrix from the world coordinate system to the camera coordinate system, T is the
translation vector.
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Protective Transformation The projection from the camera coordiantes to the camera projective coordi-
nates (without considering distortions) are given by:{

xc = fXc/Zc
yc = fYc/Zc

(2)

where f is the focal length.

Distortions Model In practice, the lense of the camera introduces distortions, hence the imaging process
does not satisfy the ideal pinhole camera model. In the calibration process, the distortions need to be carefully
considered. In general, the distortion include both radial distortion (δxr, δyr) and tangential distortion (δxt, δyt).
The radial distortion (δxr, δyr) are represented as{

δxr(xc, yc) = xc(k1r
2 + k2r

4 + k3r
6 + · · · ),

δyr(xc, yc) = yc(k1r
2 + k2r

4 + k3r
6 + · · · ), (3)

where r2 = x2c + y2c , k1, k2, k3, · · · are the radial distortion parameters. The tangential distortion (δxt, δyt) can be
represented as {

δxt(xc, yc) = 2p1xcyc + p2(r2 + 2x2c),
δyt(xc, yc) = p1(r2 + 2y2c ) + 2p2xcyc,

(4)

where p1, p2 are tangential distortion parameters.
After considering the camera distortion, the distorted camera projective coordinates (xd, yd) of the point p can
be represented as {

xdc = xc + δxr(xc, yc) + δxt(xc, yc)

ydc = yc + δyr(xc, yc) + δyt(xc, yc)
(5)

After the projective transformation, the camera image coordinates of the point p can be represented as uc
vc
1

 =

 fu s u0

0 fv v0
0 0 1

 xdc
ydc
1

 = A

 xdc
ydc
1

 (6)

where fu, fv are the effective focal lengths along u and v directions respectively, s is the slant parameter of the
coordinate axis, (u0, v0) are the coordinates of principle point, the intersection point between the optical axis of
the camera and the image plane.

Mathematical Model In practice, the mathematical model for camera and projector can be described using
the following pipeline:

(Xw, Yw, Zw)
ϕ1−−−−−→ (Xc, Yc, Zc)

ϕ2−−−−−→ (xc, yc)
ϕ3−−−−−→ (xdc , y

d
c )

ϕ4−−−−−→ (uc, vc)

The top row shows the image formation process of the camera, the bottom row shows the image formation of the
projector.

1. The map ϕ1 : (Xw, Yw, Zw)→ (Xc, Yc, Zc) transforms from the world coordinates to the camera coordinates,
which is a rotation and a translation, as shown in Eqn. (1);

2. ϕ2 : (Xc, Yc, Zc)→ (xc, yc) is the pinhole camera projection, maps from camera coordinates to the camera
projective coordinates, as shown in Eqn. (2);

3. ϕ3 : (xc, yc) → (xdc , y
d
c ) is the camera distortion map in Eqn. (5), transforms from camera projective

coordinates to the distorted camera projective coordinates, the distortion includes both radial distortion
Eqn. (3) and tangential distortion Eqn. (4);

4. ϕ4 : (xdc , y
d
c )→ (uc, vc) is the projective transformation in Eqn. (6), which maps from the distorted camera

projective coordinates to the camera image coordinates.

3.2 Pinhole Camera Calibration

Camera calibration aims at find all the parameters of the camera, including extrinsic parameters: rotation Rc,
translation Tc; intrinsic parameters: effective focal lengths fu, fv; slant parameter s, principle center (u0, v0);
and the distortion parameters: radial distortion parameters k1, k2, k3, tangential distortion parameters p1, p2.
In practice, intrinsic parameters also include distortion parameters. Generally, k3 and s are small enough, and
usually treated as 0’s. We denote all the extrinsic and intrinsic parameters as

µ = (Rc, Tc, fu, fv, s, u0, v0),

and all the distortion parameters as
λ = (k1, k2, k3, p1, p2).
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Calibration Board The target board for calibration is a planar plate with a checker board pattern. The
corners of the checkers are detected using corner detector [?]. The top left corner is the origin of the world
coordinates system, the horizontal and vertical directions are along Xw and Yw axis, the normal to the target
plane is the Zw axis.

During the calibration process, each time we fix the position of the target board plane π, the local coordinates
system of the target plane is treated as the world coordinates system, the plane equation is Zw = 0, the corners
of the checkers are known, denoted as

{(X1
w, Y

1
w), (X2

w, Y
2
w), · · · , (Xn

w, Y
n
w )},

the image coordinates of each star center is captured

{(u1, v1), (u2, v2), · · · , (un, vn)}.

From the mapping {(Xi
w, Y

i
w)} → {(ui, vi)}, by using the method in [21], we can estimate the extrinsic and

intrinsic parameters µ.

Parameters Estimation The image formation mapping, also called the forward projection, depends on the
extrinsic and the intrinsic parameters,

ϕµ,λ : (Xw, Yw, Zw)→ (u, v), ϕµ,λ = ϕ4 ◦ ϕ3 ◦ ϕ2 ◦ ϕ1.

The calibration problem is formulated as an optimization problem:

min
λ,µ

E(λ, µ) = min
λ,µ

n∑
i=1

‖ϕλ,µ(Xi
w, Y

i
w)− (ui, vi)‖2.

we first use Zhang’s algorithm [?] to estimate µ, the extrinsic and intrinsic parameters; then fix µ, optimize
E(λ, µ) with respect to λ; third, fix λ and optimize E(λ, µ) with respect to µ. By alternating optimizations, we
can reach the optimum

(λ∗, µ∗) = argminλ,µE(λ, µ).

The optimization can be carried out using gradient descend algorithm:

∇E
∂λ

=

[
∂E

∂k1
,
∂E

∂k2
,
∂E

∂k3
,
∂E

∂p1
,
∂E

∂p2

]T
.

4 Light Field Camera Model and Calibration

In this work, we adapt a general camera model, the light field camera. As shown in Fig. (5), each pixel (i, j) receive
the light signal along a ray γ(i, j). A light field camera can be treated as a set of rays {γ(i, j)} parameterized by
the image pixels.

Figure 5: A light field camera model, each pixel represents a ray in the physical world independently.

In the pinhole camera model, all the rays intersect at the optical center. In contrast, in the light field camera
model, the rays are independent, they may or may not share any common point.Therefore, the light field model
doesn’t require the concept of optical center, and stores the rays of all pixels instead of a few parameters. The
light field camera model is much more general, and much more accurate than the conventional pinhole model.
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(a). calibration mode. (b). capture mode.

Figure 6: The calibration mode and the capture mode for our stereo-camera system.

System Setup Fig. (6) illustrates our hardware system setup for the light field camera calibration. The
camera system is mounted on a linear rail (sliding table) and can freely slide along it. The rail is orthogonal to a
LCD panel. Different patterns are displayed on the LCD screen and captured by both left and right cameras. The
world coordinates system is set as follows: the LCD panel is the plane of Zw = 0, the center of the LCD panel
is the origin of the world, the horizontal and vertical directions of the LCD panel are the Xw and Yw directions,
and the Zw direction is along the linear rail.

γ(i, j)

π1 π2 π3I

z

(i, j) p1

p2
p3

Figure 7: Line fitting based on principle component analysis.

We can either slide the camera system along the linear rail as shown in Fig. (6), or equivalently move the
LCD panel as shown in Fig. (7). In our experiments, we move the camera system to different planes π1, π2 and
π3 respectively. The equations for the planes are:

π1 : Zw = 750, π2 : Zw = 800, π3 : Zw = 850,

where the unit is millimeter. Suppose the ray through the (i, j)-th pixel of one light field camera is γ(i, j). As
shown in Fig. (7), γ(i, j) intersects πk at pk, k = 1, 2, 3. We estimate γ(i, j) from {pk} using the Principle
Component Analysis (PCA) method.

Comparing to the conventional method, this method has many advantages: a). it replaces the target board
by the LCD panel, the panel has much less physical distortion than the board; b). each pixel on the LCD panel
can be used as the markers for the calibration, the number of pixels is much more than the that of the corners of
the checker board in the conventional method; c). the mathematical formulation is much simpler than that in the
conventional method, the PCA method finds the global optimum instead of the local optimum in the conventional
nonlinear optimization; d). the ray associated for each pixel can be estimated independently, the whole algorithm
is intrinsically parallel; e). the proposal calibration method has much more parameters than the conventional
method and can represent complicated distortions, hence greatly improve the accuracy.
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Line Fitting Based on Principle Component Analysis Suppose we are give a set of points {p1, p2, p3, . . . , pk}
in R3, our goal is to find a best fitting linear space π, which is called the principle analysis of the point set. Each
point pi is projected to the linear space to obtain the projection p̃i. Our goal is to minimize the approximation
error,

E(π) :=

k∑
i=1

‖pi − p̃i‖2, (7)

which is a least square problem. For 0 dimension, the best fitting point c is obtained by optimizing

min
c

k∑
i=1

‖pi − c‖2 =
k

min
i=1
〈pi − c, pi − c〉.

By differentiating the energy, we obtain 2
∑k
i=1(pi − c) = 0, and the center formula

c =
1

k

k∑
i=1

pi.

Then we shift every pi to pi − c. For the best fitting line γ(t), it is represented as

γ(t) = c+ td, d ∈ S2,

where d is the unit direction vector. The projection of the vector pi − c to the line is 〈pi − c, d〉d, and the error
vector is

ei := (pi − c)− 〈pi − c, d〉d.
Since the center c is fixed, minimizing the length of the error vector ei is equivalent to maximizing the length of
the projection component 〈pi − c, d〉d. The signed length of the projection component is given by

〈pi − c, d〉 = dt(pi − c) = (pi − c)td,

then the least square problem is formulated as maximizing the projection component:

max
d∈S2

k∑
i=1

dT (pi − c)(pi − c)T d = max
d∈S2

dT
[

k∑
i=1

(pi − c)(pi − c)T
]
d = max

d∈S2
dTΣd, (8)

where Σ is the covariance matrix. By definition, for any vector v ∈ R3,

vTΣv =

3∑
i=1

〈pi − c, v〉2 ≥ 0.

Suppose we assume pi − c span the whole R3, and v is not equal to 0, then the vTΣv is positive. This shows the
covariance matrix Σ is positive definite. Then it can be decomposed as

Σ = OTΣO, OTO = Id,

where O is a rotation matrix, formed by the eigen vectors ei’s of Σ,

O = (e1, e2, e3), Oei = λi, λ1 ≥ λ2 ≥ λ3.

The eigen vectors form an orthonormal frame of R3, 〈ei, ej〉 = δij . Then the direction vector d can be represented
as d = xe1 + x2e2 + x3e3, hence

dtΣd = λ1x
2
1 + λ2x

2
2 + λ3x

3
3 ≤ λ1(x21 + x22 + x23) = λ1.

The equality holds if and only if d equals to the first eigen vector e1 of Σ. This shows the solution to the least
square problem in Eqn. (8) is the first eigen vector of the covariance matrix. Hence the best fitting line is given
by

γ(t) = c+ te1. (9)

This process is also called the Principle Component Analysis method.
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Virtual Camera Once a light camera has been calibrated, we can use it to synthesize virtual pinhole cameras,
then we can the virtual camera and conventional vision algorithms directly.

First, we define a virtual optical center. Since all the camera rays may not intersect at a common point, we
define the optical center as the one minimizing the total squared distance to all camera rays. For each camera
ray γij := γ(i, j), it is represented as

γij(t) := aij + nijt,

where aij is the base point, nij the unit direction vector. The squared distance from a point p ∈ R3 to the line
of γij is given from Pythagoras:

d2ij = |p− aij |2 − 〈p− aij , nij〉2 = (p− aij)t(p− aij)− [(p− aij)Tnij ]2,

where (p− aij)tnij is the projection of p− aij on the line. The sum of distance to the square to all lines is:∑
i,j

d2ij =
∑
i,j

[
(p− aij)T (p− aij)− [(p− aij)tnij ]2

]
In order to minimize the total squared distance, we differentiate it with respect to p.∑

i,j

(p− aij)− [(p− aij)Tnij ]nij = 0

Namely ∑
i,j

(p− aij) =
∑
i,j

[(p− aij)Tnij ]nij =
∑
i,j

nij [(p− aij)Tnij ] =
∑
i,j

nijn
t
ij(p− aij)

Then we obtain a linear equation [∑
i,j

(nijn
T
ij − I)

]
p =

∑
i,j

(nijn
T
ij − I)aij , (10)

where I is the identity matrix. The linear system can be solved using Eigen library []. The virtual optical center
is denoted as Ov.

Seond, we define the virtual camera image plane πv as Zw = 0. Each ray γ(i, j) in the light field camera
intersects πv at p(i, j). The (i, j)-th pixel in the physical camera is mapped to p(i, j) in the virtual camera image
plane. We use a piecewise linear mapping to map the image captured by the physical camera to the virtual
camera image. The mapping can be implemented using texture mapping method directly using OpenGL. Fig. (8)
shows a virtual camera construction result. The left frame is the real image captured by our physical camera,
some circles are distorted and look like ellipses. The right frame is the virtual camera image, all the circles are
corrected and look much more circular.

(a) physical camera image (b) virtual camera image

Figure 8: Comparision between the real image captured by our physical camera and the the image of our
virtual camera at Zw = 0. On the physical image, some circles are distorted to ellipses, on the virtual
image, they are corrected to circles.

In this way, both the left and the right physical cameras are converted to virtual pinhole cameras. Next, we
can use conventional algorithms for stereo-matching and reconstruction.
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5 Stereo-matching and Reconstruction

In this section, we review the conventional algorithms in stereo-vision, including rectification, stereo-matching and
triangulation (reconstruction). The stereo-matching algorithm matches each pixel in the left image to a unique
pixel in the right image. The triangulation algorithm computes the intersection between the camera rays through
the pair of matched pixels to obtain the depth information.

π1

π2

π′ π′

p

O1

O2

e′1

e′2 e′3

O′

(i, j) (i∗, j)

Figure 9: Epipolar rectification.

Figure 10: Epipolar rectification results.

Epipolar Rectification Finding matches in stereo vision is restricted by epipolar geometry: as shown in
Fig. (10), each pixel’s match in another image can only be found on a line called epipolar line. If the two images
are coplanar, and their optical centers differ by a horizontal translation, then each pixel’s epipolar line is horizontal
and at the same vertical position as that pixel. In general settings, the epipolar lines are slanted. Image epipolar
rectification warps both images to make their epipolar lines to be horizontal, therefore simplifies the matching
process.

Suppose we have two virtual cameras with optical centers O1 and O2, and image planes π1 and π2 respectively.
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We choose the middle point of the optical centers as the origin of the rectified coordinate system,

O′ =
1

2
(O1 +O2),

the new x-direction is given by

e′1 =
O2 −O1

|O2 −O1|
,

the rectified z-direction equals to the original z-direction, e′3 = e3, and the rectified y-direction is given by

e′2 = e′3 × e′1,

where × is the cross product of vectors. Then we can transform the coordinates to the rectified frame {O′ :
e′1, e

′
2, e
′
3} by a rigid motion,

(e′1, e
′
2, e
′
3)

 x′

y′

z′

+O′ = (e1, e2, e3)

 x
y
z

+O.

Hence the coordinate transformation is given by x
y
z

 = R

 x′

y′

z′

+ T,

where the translation vector is given by T = O′ − O, and rotation R matrix is R = (e′1, e
′
2, e
′
3), namely the

coordinates of the axis vectors of the rectified frame.
In the rectified coordinate systems, we choose the image plane π′ as z′ = c′. Consider the left virtual camera

{π1, O1}, each (i, j)-th pixel on the image plane represents a ray γ(i, j), which intersects π′ at (u, v). This gives
a projective transformation ϕ1 : π1 → π′, using the optical center O1 as the projection center. Suppose in the
rectified coordinate systems,

O′1 = (x′1, y
′
1, 0),

then the projection

ϕ1(x′, y′, z′) =
1

c′
(x′ − x′1, y′ − y′1).

Similarly, we compute the projective transformation ϕ2 : π2 → π′, O′2 = (x′2, y
′
2, 0),

ϕ2(x′, y′, z′) =
1

c′
(x′ − x′2, y′ − y′2).

The projected images are the rectified images. The projective transformation from the virtual camera image to
the rectified image can be carried out using texture mapping in OpenGL. Fig. (10) shows the results of epipolar
rectification algorithm.

Figure 11: Segmentation results.
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Stereo-matching The rectified ambient image is segmented into foreground and the background by simple
intensity threshold. For all pixels with intensity less than a threshold ε, they are labeled as background, otherwise
labeled as foreground. Fig. (11) shows the segmentation results, the background is in blue color. The stereo-
matching is conducted between the foreground pixels only.

For each foreground pixel (i, j) On the left rectified image, its corresponding epipolar line on the right rectified
image is the horizontal line with equal height. We search in the epipolar line pixel by pixel, and find the matched
pixel with the minimal difference. In practice, we choose a small neighborhood of each pixel, and measure the
total squared difference between the neighorhoods. The disparity map is defined as the difference between the
horizontal indices of the matched pair. Fig. (12) shows the disparity map computed by this algorithm.

Figure 12: Disparity Map.

Reconstruction (Triangulation) In the rectified coordinates system, the optical centers of the left and
the right virtual cameras are (−l, 0, 0) and (+l, 0, 0) respectively, both camera planes are z = c. The centers of
the left and the right camera images are (−l, 0, 0) and (+l, 0, 0). Suppose the size of the camera image is w × h,
the distance among the pixels are ∆x and ∆y. Then the coordinates of the pixel in the left image (i, j) and the
coordinates of the pixel in the right image (i+ f(i, j), j) are

((i− w/2)∆x+ l, (j − h/2)∆y, c) ((i+ f(i, j)− w/2)∆x− l, (j − h/2)∆y, c) ,

where f(i, j) is the disparity for pixel (i, j). Their intersection point between two rays is given by

(t(i− w/2)∆x− l, t(j − h/2)∆y, tc), t =
2l

f(i, j)
∆x. (11)

Thus the 3D point cloud can be obtained accordingly. Fig. (1) frame (b) and Fig. (13) show the reconstructed
3D point cloud using the stereo-matching and triangulation.

6 Phase Shifting Algorithm

Light field camera calibration and stereo-matching are based on phase shifting algorithm. In calibration process,
the coordinates of each pixel on the LCD panel is encoded by the absolute phase by Eqn. (13), and converted
to intensities by Eqn. (12) and Eqn. (14). The cameras capture the fringe images shown on the LCD panel and
compute the coordinates of pixels of the LCD panel. For stereo-matching, the 3D object is lit by the projected
fringe image. Each point on the 3D object corresponds to a pixel on the image of the digital projector. For each
pixel on the camera image, its corresponding projector pixel can be computed using the phase shifting algorithm.
The pixels on the left camera image and those on the right camera image are matched by their corresponding
projector pixel.

Projection Fringe Pattern A digital projector is used as the light source, then projector displays fringe
patterns with different wave lengths and base phase. In our experiment, the horizontal fringe patterns for the
projector are given by

Hk(u, v) = a+ b cos(Φ(u, v) + ∆ϕk) (12)
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Figure 13: Reconstructed 3D point cloud, captured from different view angles.

O1

O2

I1
I2

Op

Ip

S

Figure 14: The fringe pattern for the digital projector or the LCD display. The left and right camera
optical centers and image planes are (O1, I1) and (O2, I2) respectively. The projector optical center and
image plane are (Op, Ip).

where a is the ambient component, b the modulation,

(∆φ1,∆ϕ2,∆φ3) =

(
−2π

3
, 0,

2π

3

)
,

the absolute phase

Φ(u, v) =
2πu

λ
, (13)

λ is the wavelength. The absolute phase Φ(u, v) is solely determined by the horizontal coordinate u. Similarly,
the vertical fringe patterns are given by

Vk(u, v) = a+ b cos(Φ(u, v) + ∆ϕk), (14)

where Φ(u, v) = 2πv/λ, which is solely determined by the vertical coordinate v. The fringe pattern for the digital
projector is shown in Fig. (15). In the calibration process, the LCD panel also displays the similar fringe patterns.

Phase Shifting Algorithm Phase-shifting algorithms are widely used in 3D vision to capture depth from
the asolute phase. For the single wavelength phase-shifting algorithm, a number of fringe images with certain
phase shift are used to obtain the phase. The 3D coordinates are computed from the phase based on calibration.
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(a). H1(x, y) (b). H2(x, y) (c). H3(x, y)

(d). V1(x, y) (e). V2(x, y) (f). V3(x, y)

Figure 15: The fringe pattern for the digital projector or the LCD display.

(a). I1(x, y) (b). I2(x, y) (c). I3(x, y)

Figure 16: Fringe images in the phase-shifting algorithm, the top row shows the images captured by the
left camera, the bottom row show shows those by the right camera.

A three step phase-shifting algorithm with a phase shift of 2π/3 can be written as,

I1(x, y) = I ′(x, y) + I ′′(x, y) cos[Φ(x, y)− 2π/3]

I2(x, y) = I ′(x, y) + I ′′(x, y) cos[Φ(x, y)]

I3(x, y) = I ′(x, y) + I ′′(x, y) cos[Φ(x, y) + 2π/3]

(15)

where I ′(x, y) is the ambient, I”(x, y) the intensity modulation, and Φ(x, y) the absolute phase. Fig. 16 show three
phase-shifting images.

From the three equations, we can obtain

I ′(x, y) =
1

3
[I1(x, y) + I2(x, y) + I3(x, y)]

I ′′(x, y) =
1

3

√
3(I1 − I3)2 + (2I2 − I1 − I3)2

(16)

The relative phase or wrapped phase is given by:

ϕ(x, y) = tan−1

√
3(I1 − I3)

2I2 − I1 − I3
, (17)
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ϕ(x, y) ranging from −π to π. Fig. (17) shows the ambient, modulation and wrapped phase components computed
from the fringe images in Fig. (16).

(a). ambient I ′(x, y) (b). modulation I ′′(x, y) (c). wrapped phase ϕ(x, y)

Figure 17: The ambient, modulation and wrapped phase computed from the fringe images in Fig. 16.

Phase Unwrapping The actual absolute phase is given by

Φ(x, y) = 2πk(x, y) + ϕ(x, y), (18)

where k(x, y) are integers. The process of recovering k(x, y) is called phase unwrapping. In this work, we use dual
wave length phase unwrap method.

Suppose we capture the fringe images of two wave lengths λ1 and λ2, and compute the wrapped phase φ1(x, y)
and φ2(x, y). Then according to Eqn. (13),

Φ1(x, y)− Φ2(x, y) =
2πu

λ1
− 2πu

λ2
=

2πu

λeq
, (19)

where λeq is the equivalent wavelength,

λeq =
λ1λ2

|λ1 − λ2|
. (20)

Suppose λ1 and λ2 are close enough, therefore λeq is very big so that the whole field of view (FOV) is covered
by a single wavelength, therefore the wrapped phase ϕ1(x, y) − ϕ2(x, y) equals to the absolute phase. By the
unwrapped phase of equivalent wavelength λeq, we can recover the unwrapped phase for λ1 and λ2.

7 Experiments

Hardware System The two gray scale cameras are new point Grey/Flir Grasshopper-20s4M camera with
IEEE 1394B FireWire interface, and Arducam C-Mount Lens for 12MP IMX477 Raspberry Pi HQ Camera, 16mm
Focal Length with Manual Focus and Aperture Adjustment. The image resolution is 1600×1200. The color camera
is IDS CCD 3.0 C-mount camera UI-6280SE-C-HQ with GigE interface, and a Fujinon HF25SA-1 lense. The
cameras are mounted on a koolehaoda Aluminium 480mm Professional Rail, the camera system is mounted on a
400mm CNC Sliding Table with a cross slide linear stage and a ballscrew. The digital project is TI Lightcrafter
4500 Education module with resolution 1140 × 912. The cameras and the projector are synchronized, and the
projector sends out the trigger signals. As shown in Fig. 19, various clamps and adapters are designed use Fusion
360, and printed using Creality 3D Ender V2 3D printer. The scanned object is scanned from Michelangelo’s
David sculpture and 3D printed.

Software System The algorithms are implemented using generic C++ on Windows Visual Studio platform.
The image processing is based on OpenCV library, the graphics display uses OpenGL and freeglut, the linear
systems are solved using Eigen library. The digital camera program is based on FlyCapture SDK, the digital
projector coding is based on TI Lightcrafter SDK.

System Alignment We use the laser pointer to align the system, as shown in the right frame of Fig. 20. In
the first step, we mount a small screen on the linear stage of the sliding table, then slide the stage and observe the
intersection between the laser beam and the screen. By adjusting the orientation of the laser pointer, we ensure
the intersection point is invariant when we slide the stage and change the position of the screen. This means the
laser beam is parallel to the linear rail. In the second step, we attach a first surface mirror on the LCD panel,
and adjust the orientation of the LCD panel, such that the laser beam hits the mirror and is reflected to the lense
of the laser pointer. This means the LCD panel is perpendicular to the laser beam, therefore to the linear rail as
well.
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(a) wrapped phase λ1 = 18 (b) wrapped phase λ = 18.5

(c) unwrapped phase λ1 = 18 (b) unwrapped phase λ = 18.5

Figure 18: Dual wavelength method for phase unwrapping.

Figure 19: The clamps and adapters are 3D printed. The scanned object is also 3D printed.

Exermpiental Results We have tested our calibration algorithm and stereo-vision system by scanning real
objects in physical world. Fig. (13) and Fig. (22) show the point clouds of the 3D printed David sculpture scanned
from different view angles. Fig. (23) illustrates the point clouds of a Chinese dragon sculpture. From the scanning
results, we can see that all the geometric details, such as the scales, the teeth of the sculpture are accurately
reconstructed. Fig. (24) shows the scanned results for various objects, including the fruits and vegetables. The
small bumps on the cucuber are clearly detected. The experiment for scanning a watermelon in Fig. (??) is more
challenging, because the melon surface has dark areas and highly reflective regions. We use multiple-exposure
technique for the scan and obtain good reconstruction quality.

The scanned point clouds are merged together using iterative closest point (ICP) method [17, 20, 14]. The
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Figure 20: The laser pointer is mounted on a multi-position magnetic base with two degree of freedoms.
The system is aligned uses the laser beam.

merged point clouds are reconstructed as triangle mesh using Poisson reconstruction algorithm [11]. The recon-
struction is carried out using MeshLab software. The reconstructed meshes are 3D printed directly.

Furthermore, we use our system to scan a planar object. The best fitting plane is calculated using the PCA
method. Then we measure the average distance from the reconstructed points to the best fitting plane, the error
is about 0.3mm. The error obtained based on conventional calibration method is about 2.4mm. This shows our
proposed method outperforms the convention one.

8 Conclusion

This work proposes a novel algorithm for light field camera calibration. Comparing to conventional pinhole camera
model, the light field camera has much more parameters and can describe complicated distortions of the lense and
the sensors. The classical calibration method is based on non-linear optimization method, the proposed method is
based on PCA, which has unique global optimum, and is much simpler and purely in parallel. Our experimental
results shows that our algorithm achieves better performance.
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Figure 21: 3D scanned point clouds from different view angles.
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Figure 22: Reconstructed 3D Surface from scanned point clouds and the 3D printed model with the
original object. It can be seen that the scanning quality is high and the printed model preserves most
geometric features of the original surface.
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Figure 23: 3D scanned point clouds for the dragon model from different view angles.
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Figure 24: 3D scanned point clouds from different view angles. Top rows vase model, middle row: pear
and peach, bottom row: cucumber.
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Figure 25: 3D scanned point clouds from different view angles, a watermelon.

Figure 26: 3D reconstructed teeth fossils.

Figure 27: 3D reconstructed bone fossil.
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Figure 28: 3D reconstructed skull fossils.
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Figure 29: 3D reconstructed girl sculpture and the 3D printed model.
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Figure 30: Real objects for the scanning tests.
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