Chances, Probabilities,
and Odds

Measuring Uncertainty

With the possible exception of death and taxes, pretty much everything else that
happens to us in our lives is layered with some degree of uncertainty. That's why
we pay attention to the weather report, buy insurance, and constantly wish our
friends “good luck.”

Although we are all familiar with uncertainty, we don't always have a good
grasp on how to measure it. Some situations involve only a small degree of
uncertainty (“I'm pretty sure | aced the midterm”), some situations involve a large
degree of uncertainty (“ have no clue how | did in that midterm”), and some
situations fall in between ("I think | did well in the midterm, but . . .”). To quantify
and measure more precisely the amount of uncertainty in the many uncertain
events that affect our lives we use the concept of probability.




66 Nothing in life is certain except
death and taxes. 99
—Ben Franklin

hance, probability, odds—we use these words carelessly in casual

conversation, and most of the time we can get away with it. Technically
speaking, however, each of these words represents a slightly different way to
measure the likelihood of an event. When we speak of the
chance of some event happening we express it in terms of
percentages, such as when the weatherperson reports that
“the chance of rain tomorrow is 40%.” When we speak of
the probability of some event happening we express it in
terms of a ratio (“the probability is 2 out of 5”) or, equiva-
lently as a fraction (%) or a decimal (0.4). Finally, when we
speak of the odds in favor of an event, we use a pair of
numbers, as in “the odds of the Red Sox winning the World
Series are 2to 3.”

In this chapter we will learn how to interpret and
work with probabilities, chances, and odds in a formal
mathematical context. This will be our very brief introduction to the mathe-
matical theory of probability, a relatively young branch of mathematics that
has become critically important to many aspects of modern life. Insurance,
public health, science, sports, gambling, the stock market—wherever there
is uncertainty to be tamed —the mathematical theory of probability plays a
significant role.

Our discussion in this chapter is divided into two parts. In the first part we
introduce the basic theoretical framework needed for a meaningful discussion of
probabilities: the concepts of random experiment and sample space (Section 15.1),
the basic rules of counting (Section 15.2), and the dual concepts of permutation and
combination (Section 15.3). In the second part of the chapter we discuss general
probability spaces (Section 15.4) and probabilities in spaces in which all outcomes
are equally likely (Section 15.5). The chapter concludes with a brief discussion of
odds and their relationship to probabilities (Section 15.6).
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Random Experiments and Sample Spaces

In broad terms, probability is the quantification of uncertainty. To understand
what that means, we may start by formalizing the notion of uncertainty.

We will use the term random experiment to describe an activity or a process
whose outcome cannot be predicted ahead of time. Typical examples of random
experiments are tossing a coin, rolling a pair of dice, drawing cards out of a deck
of cards, predicting the result of a football game, and forecasting the path of a
hurricane.

Associated with every random experiment is the ser of all of its possible out-
comes, called the sample space of the experiment. For the sake of simplicity, we
will concentrate on experiments for which there is only a finite set of outcomes,
although experiments with infinitely many outcomes are both possible and
important.

We illustrate the importance of the sample space by means of several exam-
ples. Since the sample space of any experiment is a set of outcomes, we will use
set notation to describe it. We will consistently use the letter S to denote a sample
space and the letter N to denote the size of the sample space S (i.e., the number
of outcomes in ).

EXAMPLE 15.1 Tossing a Coin

One simple random experiment is to toss a quarter and observe whether it lands
heads or tails. The sample space can be described by § = {H, T}, where H stands
for Heads and T for Tails. Here N = 2. (ans)

A couple of comments about coins are in order here. First, the fact that the
coin in Example 15.1 was a quarter is essentially irrelevant. Practically all coins
have an obvious “heads” side (and thus a “tails” side), and even when they
don’t—as in a “buffalo nickel” —we can agree ahead of time which side is which.
Second, there are fake coins out there on which both sides are “heads.” Tossing
such a coin does not fit our definition of a random experiment, so from now on,
we will assume that all coins used in our experiments have two different sides,
which we will call H and T.

EXAMPLE 15.2 ) More Coin Tossing

Suppose we toss a coin twice and record the outcome of each toss (H or 7) in the
order it happens. The sample space nowis § = {HH, HT,TH,TT}, where HT
means that the first toss came up  and the second toss came up 7T, which is a
different outcome from TH (first toss T and second toss H). In this sample
space N = 4.

Suppose now we foss two distinguishable coins (say, a nickel and a quarter)
at the same time (tricky but definitely possible). This random experiment ap-
pears different from the one where we toss one coin twice, but the sample space
is still § = {HH,HT,TH,TT}. (Here we must agree what the order of the
symbols is—for example, the first symbol describes the quarter and the second
the nickel.)

Since they have the same sample space, we will consider the two random ex-
periments just described as the same random experiment.
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Now let’s consider a different random experiment. We are still tossing a coin
twice, but we only care now about the number of heads that come up. Here there
are only three possible outcomes (no heads, one head, or both heads), and sym-
bolically we might describe this sample space as § = {0, 1, 2}.  a—

The important point made in Example 15.2 is that a random experiment is
defined by two things: the action (such as tossing coins) and what it is that we are
interested in observing from the action.

( EXAMPLE 15.3) Shooting Free Throws

Here is a familiar scenario: Your favorite basketball team is down by 1, clock run-
ning out, and one of your players is fouled and goes to the line to shoot free
throws, with the game riding on the outcome. It’s not a good time to think of sam-
ple spaces, but let’s do it anyway.

Clearly the shooting of free throws is a random experiment, but what is the
sample space? As in Example 15.2, the answer depends on a few subtleties.

In one scenario (the penalty situation) your player is going to shoot two free
throws no matter what. In this case one could argue that what really matters is
how many free throws he or she makes (make both and win the game, miss one
and tie and go to overtime, miss both and lose the game). When we look at it this
way the sample spaceis § = {0, 1, 2}.

A somewhat more stressful scenario is when your player is shooting a one-
and-one. This means that the player gets to shoot the second free throw only if he
or she makes the first one. In this case there are also three possible outcomes, but
the circumstances are different because the order of events is relevant (miss the
first free throw and lose the game, make the first free throw but miss the second
one and tie the game, make both and win the game). We can describe this sample
space as S = {f, sf, ss}, where we use f to indicate failure (missed the free
throw) and s to indicate success. ()

We will now discuss a couple of examples of random experiments involving
dice. A die is a cube, usually made of plastic, whose six faces are marked with dots
(from 1 to 6) called “pips.” Random experiments using dice have a long-standing
tradition in our culture and are a part of both gambling and recreational games
such as Monopoly or Yahtzee.

( EXAMPLE 15.4 ) Rolling a Pair of Dice

The most common scenario when rolling a pair of dice is to only consider the
total of the two numbers rolled. In this situation we don’t really care how a partic-
ular total comes about. We can “roll a seven” in various paired combinations—a
3anda4,a2anda5,al and a 6. No matter how the individual dice come up, the
only thing that matters is the total rolled.

The possible outcomes in this scenario range from “rolling a two” to “rolling
a twelve,” and the sample space can be described by S = {2,3,4,5,6,7,8,9,

10,11, 12}. [ a—

( EXxaMPLE 155 ) More Dice Rolling

A more general scenario when rolling a pair of dice is when we do care what
number each individual die turns up (in certain bets in craps, for example, two
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@8 ()8 ]88 88 [ BB “fours” is a winner but a “five” and a “three” is not). Here we

have a sample space with 36 different outcomes, shown in Fig.
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FIGURE 15-1

Ranking the Candidates in an Election

Five candidates (A, B, C, D, and E) are running in an election. The top three vote
getters are chosen President, Vice President, and Secretary, in that order. Such an
election can be considered a random experiment with sample space § = {ABC,
ACB, BAC, BCA,CAB,CBA, ABD, ADB,...,CDE}. We will assume that
outcome ABC denotes that candidate A is elected President, B is elected Vice Pres-
ident, and C'is elected Secretary. This is important because the outcomes ABC and
BAC are different outcomes and must appear separately in the sample space.
Because this sample space is a bit too large to write out in full (we will soon
learn that its size is N = 60), we use the “. . .” notation. It is a way of saying “and
so on—you get the point.” )

Example 15.6 illustrates the point that sample spaces can have a lot of out-
comes and that we are often justified in not writing each and every one of them
down. This is where the “. . .” comes in handy. The key thing is to understand what
the sample space looks like without necessarily writing all the outcomes down.
Our real goal is to find N, the size of the sample space. If we can do it without
having to list all the outcomes, then so much the better. We will discuss how this is
done in the next two sections.

Counting Outcomes in Sample Spaces
Tossing More Coins

If we toss a coin three times and separately record the outcome of each toss, the sam-
plespaceisgivenby S = {HHH, HHT, HTH, HTT, THH , THT,TTH, TTT}.
Here we can just count the outcomes and get N = 8.

Now let’s look at an expanded version of the same idea and toss a coin 10
times (and record the outcome of each toss). In this case the sample space S is too
big to write down, but we can “count” the number of outcomes in S without hav-
ing to tally them one by one. Here is how we do it.

Each outcome in § can be described by a string of 10 consecutive letters,
where each letter is either H or 7. (This is a natural extension of the ideas intro-
duced in Example 15.2.) For example, THHTHTHHTT represents a single out-
come in our sample space —the one in which the first toss came up 7, the second
toss came up H, the third toss came up 7, and so on. To count all the outcomes,
we will argue as follows: There are two choices for the first letter (H or T), two
choices for the second letter, two choices for the third letter, and so on down to
the tenth letter. The total number of possible strings is found by multiplying the
number of choices for each letter. Thus N £72%042 447! ()
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The rule we used in Example 15.6 is an old friend from Chapter 2—the
multiplication rule, and for a formal definition of the multiplication rule the
reader is referred to Section 2.4. Informally, the multiplication rule simply says
that when something is done in stages, the number of ways it can be done is
found by multiplying the number of ways each of the stages can be done. The
easiest way to understand this simple but powerful idea is by looking at some
examples.

The Making of a Wardrobe

Dolores is a young saleswoman planning her next business trip. She is thinking
about packing three different pairs of shoes, four skirts, six blouses, and two jack-
ets. If all the items are color coordinated, how many different outfits will she be
able to create by combining these items?

To answer this question, we must first define what we mean by an “outfit.”
Let’s assume that an outfit consists of one pair of shoes, one skirt, one blouse, and
one jacket. Then to make an outfit Dolores must choose a pair of shoes
(three choices), a skirt (four choices), a blouse (six choices), and a jacket (two
choices). By the multiplication rule the total number of possible outfits is
3 X 4 X 6 X 2= 144. (Think about it—Dolores can be on the road for over four
months and never have to wear the same outfit twice! And it all fits in a small

suitcase.) ()

The Making of a Wardrobe: Part 2

Once again, Dolores is packing for a business trip. This time, she packs three pairs
of shoes, four skirts, three pairs of slacks, six blouses, three turtlenecks, and two
jackets. As before, we can assume that she coordinates the colors so that every-
thing goes with everything else. This time, we will define an outfit as consisting of
a pair of shoes, a choice of “lower wear” (either a skirt or a pair of slacks), and a
choice of “upper wear” (it could be a blouse or a turtleneck or both), and, finally,
she may or may not choose to wear a jacket. How many different such outfits are
possible?

This is a more sophisticated variation of Example 15.8. Our strategy will be
to think of an outfit as being put together in stages and to draw a box for each of
the stages. We then separately count the number of choices at each stage and
enter that number in the corresponding box. (Some of these calculations can
themselves be mini-counting problems.) The last step is to multiply the numbers
in each box. The details are illustrated in Fig. 15-2. The final count for the number
of different outfitsis N = 3 X 7 X 27 X 3 = 1701.

Stage 1: Stage 2: Stage 3: Stage 4:
Choose Choose Choose Decide on
shoes “lower wear” “upper wear” jacket
3 X 7 X 27 X 3 = 1701
— — —
4+3 6+3+(6X3) ZAr 1l
A L A * .k L
skirt slacks blouse blouse & jacket no jacket
turtleneck
turtleneck
| —
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FIGURE 15-3

FIGURE 15-4

The method of drawing boxes representing the successive stages in a process,
and putting the number of choices for each stage inside the box is a convenient
strategy that often helps clarify one’s thinking. Silly as it may seem, we strongly
recommend it. For ease of reference, we will call it the box model for counting.

Ranking the Candidates in an Election: Part 2

This example is a follow-up to Example 15.6. Five candidates are running in an
election, with the top three vote getters elected (in order) as President, Vice Pres-
ident, and Secretary. We want to know how big the sample space is. Using a box
model, we see that this becomes a reasonably easy counting problem, as illustrated
in Fig. 15-3.

Stage 1: Stage 2: Stage 3:
President Vice President Secretary
5 X 4 X 3 = 60
any of the 5 any of the 4 any of the 3
candidates remaining remaining
candidates candidates
(e

Permutations and Combinations

Many counting problems can be reduced to a question of counting the number of
ways in which we can choose groups of objects from a larger group of objects.
Often these problems require somewhat more sophisticated counting methods
than the plain vanilla multiplication rule. In this section we will discuss the dual
concepts of permutation (a group of objects in which the ordering of the objects
within the group makes a difference) and combination (a group of objects in
which the ordering of the objects is irrelevant).

The Pleasures of Ice Gream

Baskin-Robbins offers 31 different flavors of ice cream. A “true double™ is
the name we will use for two scoops of ice cream of two different flavors.
Say you want a true double in a bowl—how many different choices do you
have?

The natural impulse is to count the number of choices using the multi-
plication rule (and a box model) as shown in Fig. 15-4. This would give an
answer of 31 X 30 = 930 true doubles. Unfortunately, this answer is
double counting each of the true doubles. Why?

Stage 1: Stage 2:
Choose a flavor Choose a different flavor
3 X 30 =930
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When we use the multiplication rule, there is a well-defined order to things, and a
scoop of strawberry followed by a scoop of chocolate is counted separately from a
scoop of chocolate followed by a scoop of strawberry. But by all reasonable stan-
dards, a bowl of chocolate-strawberry is the same as a bowl of strawberry-chocolate.
(This is not necessarily true when the ice cream is served in a cone. Fussy people can
be very picky about the order of the flavors when the scoops are stacked up.)

The good news is that now that we understand why the count of 930 is wrong
we can fix it. All we have to do to get the correct answer is to divide the original
count by 2. It follows that the number of true double choices at Baskin-Robbins
is (31 X 30)/2 = 465. ()

Example 15.11 is an important one. It warns us that we have to be careful
about how we use the multiplication rule and box models in counting problems
where the order in which we choose the objects (ice cream flavors) does not af-
fect the answer. Let’s take this idea to the next level.

The Pleasures of Ice Cream: Part 2

Some days you have a real craving for ice cream, and on such days you like to go
to Baskin-Robbins and order a true triple (in a bowl). How many different choices
do you have? (As you might have guessed, a “true triple” consists of three
scoops of ice cream each of a different flavor.)

Starting with the multiplication rule, we have 31 choices for the “first”
flavor, 30 choices for the “second” flavor, and 29 choices for the “third”
flavor, for an apparent grand total of 31 X 30 X 29 = 26,970. But once
again this answer counts each true triple more than once;in fact, it does so
six times! (More on that shortly.) If we accept this, the correct answer must
be 26,970/6 = 4495.

Why is it that the count of 26,970 counts each true triple six times?
The answer comes down to this: Any three flavors (call them X, Y, and Z)
can be listed in 3 X 2 X 1 = 6 different ways (XYZ, XZY, YXZ, YZX,
ZXY, and ZYX). The multiplication rule counts each of these separately, but
when you think in terms of ice cream scoops in a bowl, they are the same true
triple regardless of the order.

The bottom line is that there are 4495 different possibilities Tor a tru€ triple
at Baskin-Robbins. We can better understand where this number comes from by
looking at it in its raw, uncalculated form [ (31 X 30 X 29)/(3 X 2 X 1) = 4495].
The numerator (31 X 30 X 29) comes from counting ordered triples using the
multiplication rule; the denominator (3 X 2 X 1) comes from counting the num-
ber of ways in which three things (in this case, the three flavors in a triple) can be
rearranged. The denominator 3 X 2 X 1 is already familiar to us—it is the
v|*| factorial of 3. (We discussed the factorial in Chapters 2 and 6, so we won'’t
dwell on it here.) ()
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Five-Card Poker Hands

In this example we will compare two types of games: five-card stud poker and
five-card draw poker. In both of these games a player ends up with five cards, but
there is an important difference when analyzing the mathematics behind the
games: In five-card draw the order in which the cards come up is irrelevant; in
five-card stud the order in which the cards come up is extremely relevant. The
reason for this is that in five-card draw all cards are dealt down, but in five-card
stud only the first card is dealt down —the remaining four cards are dealt up, one
at a time. This means that players can assess the relative strengths of the other
players’ hands as the game progresses and play their hands accordingly.

Left: Five-card draw poker hand: The order in which the cards are dealt is irrelevant. Center and right: Five-card siud poker hands.
The order of the up cards is important. The hand on the right is better than the hand in the center.

Counting the number of five-card stud poker hands is a direct application of
the multiplication rule: 52 possibilities for the first card, 51 for the second card, 50
for the third card, 49 for the fourth card, and 48 for the fifth card, for an awesome
total of 52 X 51 X 50 X 49 X 48 = 311,875,200 possible hands.

Counting the number of five-card draw poker hands requires a little more fi-
nesse. Here a player gets five down cards and the hand is the same regardless of the
order in which the cards are dealt. There are 5! = 120 different ways in which the
same set of five cards can be ordered, so that one draw hand corresponds to 120 dif-
ferent stud hands. Thus, the stud hands count is exactly 120 times bigger than the
draw hands count. Great! All we have to do then is divide the 311,875,200 (number
of stud hands) by 120 and get our answer: There are 2,598,960 possible five-card
draw hands. [As before, it’s more telling to look at this answer in the uncalculated
form (52 X 51 X 50 X 49 x 48)/5! = 2,598,960.] (e

We are now ready to generalize the ideas developed in Examples 15.12 and
15.13. Suppose that we have a set of n distinct objects and we want to select r dif-
ferent objects from this set. The number of ways that this can be done depends on
whether the selections are ordered or unordered. Ordered selections are the gen-
eralization of stud poker hands—selecting the same objects in different order
gets you something different. Unordered selections are the generalization of
draw poker hands—selecting the same objects in different order gets you nothing
new. To distinguish between these two scenarios, we use the terms permutation to
describe an ordered selection and combination to describe an unordered selec-
tion. (One way to remember which is which is to remember that there are many
more permutations than there are combinations.)
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You should take a look at your For a given number of objects n and a given selection size r (where 0 = r = n),
calculator and figure out the cor- we can talk about the “number of permutations of n objects taken r at a time” and
rect sequence of keystrokes to the “number of combinations of » objects taken r at a time,” and these two extremely

compute these numbers, and then

try Exercises 31 and 32. important families of numbers are denoted P, and ,C,, respectively. (Some calcu-

lators use variations of this notation, such as P, , and C,,, respectively.)
A summary of the essential facts about the numbers ,P, and ,,C, is given in

Table 15-1.
LGB B Permutations and Combinations
Notation A nCr
nn—1)n-2)-(mn—r+1)
Formula 1 Po=nn—1Dn-2)--(n—r+1) ACr = ;
Fl
Formula 2 p=—" C &
rm = ="
ormuia T (n=r)! T (n= r)lr!
Applications Stud poker hands, rankings, Draw poker hands, lottery tickets,
committees with assignments coalitions, subsets
The Florida Lotto
FEe Like many other state lotteries, the Florida Lotto is a
s game in which for a small investment of just one dollar a
4 / 6& | player has a chance of winning tens of millions of dollars.

/ ’( Wt ,A\;g‘f“" ' Enormous upside, hardly any downside—that’s why peo-

//‘ 1 i o ,,”\’3:;;/,, ple love playing the lottery .and, like they say, “everybody
- 0 / S, o LA . o el has to have a dream.” But, in general, lotteries are a very
\i‘!/ / 7 o ‘;,L - -3,\:’-; /,-" c:*‘_\ 1 bad investment, even if it’s only a dollar, and the dreams
":‘""\:: 52 C-}Y:; /:\"; 3“-‘ a\":‘ can turn to nightmares. Why so?

) i ,;\.;\\-\'»; o a:-} A:Q é“\ In a Florida Lotto ticket, one gets to select six num-
Nl A =" af o\ :}{"‘_\\ 24 - bers from 1 through 53. To win the jackpot (there are
e (\\:\ RS \“ D L P other lesser prizes we won'’t discuss here), those six num-

A4 W bers have to match the winning numbers drawn by the lot-

tery in any order. Since a lottery draw is just an unordered
selection of six objects (the winning numbers) out of 53 objects (the numbers 1
through 53), the number of possible draws is s3Cg (see Table 15-1). Doesn’t sound
too bad until we do the computation (or use a calculator) and realize that

53 X 52 X 51 X 50 X 49 X 48
53C6 = ol = 22,957,480.  a—

Probability Spaces

What Is a Probability?

If we toss a coin in the air, what is the probability that it will land heads up? This
one is not a very profound question, and almost everybody agrees on the answer,
although not necessarily for the same reason. The standard answer given is 1 out
of 2, or 1/2. But why is the answer 1/2, and what does such an answer mean?
One common explanation given for the answer of 1/2 is that when we toss a
coin, there are two possible outcomes (// and T), and since / represents one of
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the two possibilities, the probability of the outcome H must be 1 out of 2 or 1/2.
This logic, while correct in the case of an"Honcst olaRasa lot*efhdles in it.
Consider how the same argument would sound in a different scenario.

Who Is Shooting Those Free Throws?

Imagine an NBA player in the act of shooting a free throw. Just like with
a coin toss, there are two possible outcomes to the free-throw shot (suc-
cess or failure), but it would be absurd to conclude that the probability of
making the free throw is therefore 1 out of 2, or 1/2. Here the two out-
comes are not both equally likely, and their probabilities should reflect
that.

The probability of a basketball player making a free throw very much
depends on the abilities of the player doing the shooting—it makes a differ-
ence if it’s Steve Nash or Shaquille O'Neal. Nash is one of the best free-
throw shooters in the history of the NBA, with a career average of 90%,
while Shaq is a notoriously poor free-throw shooter (52% career average).
These percentages, over the long term, represent an approximation of the
true probability each of them has of making a free throw—about 0.90 and
0.52, respectively. In either case, the probability is not (.5. a—

Example 15.15 leads us to what is known as the empirical interpretation
of the concept of probability. Under this interpretation when tossing an honest coin
the probability of Heads is 1/2 not because Heads is one out of two possible out-
comes but because, if we were to toss the coin over and over —hundreds, possibly
thousands, of times—in the long run about half of the tosses will turn out to be
heads, a fact that has been confirmed by experiment many times.

The argument as to exactly how to interpret the statement “the probability of
X is such and such” goes back to the late 1600s, and it wasn’t until the 1930s that a
formal theory for dealing with probabilities was developed by the Russian mathe-
matician A. N. Kolmogorov (1903-1987). This theory has made probability one of
the most useful and important concepts in modern mathematics. In the remainder
of this chapter we will discuss some of the basic concepts of probability theory.

Events

An event is any subset of the sample space. That is, an event is any set of individ-
ual outcomes. (This definition includes the possibility of an “event” that has no
outcomes as well as events consisting of a single outcome.) By definition, events
are sets (subsets of the sample space), and we will deal with events using set no-
tation as well as the basic rules of set theory.

A convenient way to think of an event is as a package in which outcomes
with some common characteristic are bundled together. Say you are rolling a pair
of dice and hoping that on the next roll “you roll a 7” —that would make you tem-
porarily rich. The best way to describe what really matters (to you) is by packag-
ing together all the different ways to “roll a 7” as a single event E:

E={HNBDECBCEFRHE]

Sometimes an event consists of just one outcome. We will call such an event a
simple event. In some sense simple events are the building blocks for all other
events (more on that later). There is also the special case of the empty set { },
corresponding to an event with no outcomes. Such an event can never happen,
and thus we call it the impossible event.
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Coin-Tossing Events

Let’s revisit the experiment of tossing a coin three times and recording the result
of each toss (Example 15.7). The sample space for this experiment is
S={HHH HHT,HTH HTT, THH, THT,TTH, TTT}. The set S has hun-
dreds of subsets (256 to be exact), each of which represents a different event.
Table 15-2 shows just a few of these events.

Event (in words)

Event (as a set)

Toss 2 or more heads. {HHT,HTH,THH, HHH}
Toss more than 2 heads. {HHH}
Toss 2 heads or fewer. {ITT,TTH, THT,HTT,THH, HTH, HHT}

Toss no tails.

{HHH}

Toss exactly 1 tail.

(HHT,HTH,THH}

Toss exactly 1 head. {HTT,THT,TTH}

First toss is heads.

{HHH,HHT, HTH, HTT}

Toss same number of heads as tails. {} (Note:This is the impossible event.)

Toss 3 heads or fewer. S (Note:This event is called the certain event.)

-

e

Event Probability

{1} 0

{s} P

ty L-p
s ) 1

(e
Probability Assignments

Let’s return to free-throw shooting, as it is a useful metaphor for many probabili-
ty questions.

The Unknown Free-Throw Shooter

A player is going to shoot a free throw. We know nothing about his or her abilities —
for all we know, the player could be Steve Nash, or Shaquille O'Neal, or Joe Schmoe,
Or you, Or me.

How can we describe the probability that he or she will make that free
throw? It seems that there is no way to answer this question, since we know noth-
ing about the ability of the shooter. We could argue that the probability could be
just about any number between 0 and 1. No problem —we make our unknown
probability a variable, say p.

What can we say about the probability that our shooter misses the free
throw? A lot. Since there are only two possible outcomes in the sample space
S = {s, f}, the probability of success (s) and the probability of failure (f) must
complement each other—in other words, must add up to 1. This means that the
probability of missing the free throw must be 1 — p.

Table 15-3 is a summary of the line on a generic free-throw shooter. Humble
as it may seem, Table 15-3 gives a complete model of free-throw shooting. It
works when the free-throw shooter is Steve Nash (make it p = 0.90), Shaquille
O’Neal (make it p = 0.52), or the author of this book (make it p = 0.30). Each
one of the choices results in a different assignment of numbers to the outcomes in
the sample space. o

Example 15.17 illustrates the concept of a probability assignment. A
probability assignment is a function that assigns to each event £ a number between



568

In the case of a simple event
{a} we cheat a little and for the
sake of simplicity we speak of “the
probability of the outcome a” when
we really should say “the probability
of the event {a}.” Accordingly, we
will write Pr(a) in lieu of the techni-

cally correct but awkward Pr({a}).

In this chapter the term
probability space will always refer
to a finite probability space. Infinite
probability spaces are important
and interesting but require a much
higher level of mathematics and we
will not discuss them here.

CHAPTER 15 Chances, Probabilities, and Odds

0 and 1, which represents the probability of the event £ and which we denote by
Pr(E). A probability assignment always assigns probability 0 to the impossible
event [Pr({ }) = 0] and probability 1 to the whole sample space [Pr(S) = 1].

With finite sample spaces a probability assignment is defined by assigning
probabilities to just the simple events in the sample space. Once we do this, we
can find the probability of any event by simply adding the probabilities of the in-
dividual outcomes that make up that event. There are only two requirements for a
valid probability assignment: (1) All probabilities are numbers between () and 1,
and (2) the sum of the probabilities of the simple evenis equals 1.

When bookmakers or professional odds-makers handicap a sporting event,
they do so by essentially defining a probability assignment for the sample space
of all possible outcomes of that event. The next example is a simple illustration of
how this might be done.

EXAMPLE 15.18 ) Handicapping a Tennis Tournament

There are six players playing in a tennis tournament: A (Russian, female),
B (Croatian, male), C (Australian, male), D (Swiss, male), £ (American, female),
and F (American, female).

To handicap the winner of the tournament we need a probability assignment
on the sample space S = {A, B, C, D, E, F'}. With sporting events the probability
assignment is subjective (it reflects an opinion), but professional odds-makers are
usually very good at getting close to the right probabilities. For example, imagine
that a professional odds-maker comes up with the following probability assign-
ment: Pr(A) = 0.08, Pr(B) = 0.16, Pr(C) = 0.20, Pr(D) = 0.25, Pr(E) = 0.16.
[We are missing Pr(F) from the list, but since the probabilities of the simple
events must add up to 1, we can do the arithmetic: Pr(F) = 0.15.]

Once we have the probabilities of the simple events, the probabilities of all
other events follow by addition. For example, the probability that an American
will win the tournament is given by Pr(£) + Pr(F) = 0.16 + 0.15 = 0.31. Like-
wise, the probability that a male will win the tournament is given by
Pr(B) + Pr(C) + Pr(D) = 0.16 + 0.20 + 0.25 = 0.61. The probability that an
American male will win the tournament is Pr({ }) = 0, since this one is an im-
possible event—there are no American males in the tournament! o |

The probability assignment discussed in Example 15.18 reflects the opinion
of one specific observer. A different odds-maker might have a slightly different
perspective and come up with a different probability assignment. This under-
scores the fact that sometimes there is no one single “correct” probability assign-
ment on a sample space.

Once a specific probability assignment is made on a sample space, the combi-
nation of the sample space and the probability assignment is called a probability
space. The following is a summary of the key facts related to probability spaces.

r ELEMENTS OF A PROBABILITY SPACE )

m Sample space: S = {0;,0,....,0y5}.

B Probability assignment: Pr(o; ), Pr(o; ),..., Pr(oy ).
[Each of these is a number between () and 1 satisfying
PI‘(O]_) + PI’(Oz) + 0+ PT(ON) = 1]

m Events: These are all the subsets of S, including { } and §itself. The probabil-
ity of an event is given by the sum of the probabilities of the individual out-
comes that make up the event. [In particular, Pr({ }) = 0 and Pr(S) = 1.]

. .
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@ Equiprobable Spaces

One of the most common uses of randomness in the real world is as a mechanism
to guarantee fairness. That’s why it is universally accepted that tossing a coin,
rolling a die, or drawing cards is a fair way of choosing among equally deserving
choices. This is true as long as the coin, die, or deck of cards is “honest.”

What does honesty mean when applied to coins, dice, or decks of cards? It es-
sentially means that all individual outcomes in the sample space are equally
probable. Thus, an honest coin is one in which H and T have the same probability
of coming up, and an honest die is one in which each of the numbers 1 through 6
is equally likely to be rolled. A probability space in which each simple event has
an equal probability is called an equiprobable space. (Informally, you can think
of an equiprobable space as an “equal opportunity” probability space.)

In equiprobable spaces, calculating probabilities of events becomes simply a
matter of counting. First, we need to find N, the size of the sample space. Each in-
dividual outcome in the sample space will have probability equal to 1/N (they all
have the same probability, and the sum of the probabilities must equal 1). To find
the probability of the event E we then find &, the number of outcomes in E. Since
each of these outcomes has probability 1/N, the probability of £ is then k/N.

PROBABILITIES IN EQUIPROBABLE SPACES, 5575050556 05 2000

If k denotes the size of an event E and N denotes the size of the sample space
S, then in an equiprobable space

Pr(E) = %

Honest Coin Tossing

This example is a follow-up of Example 15.16. Suppose that a coin is tossed three
times, and we have been assured that the coin is an honest coin. If this is true, then
each of the eight possible outcomes in the sample space has probability 1/8. (Re-
call that there are N = 8 outcomes in the sample space.)

The probability of any event E is given by the number of outcomes in E di-
vided by 8. Table 15-4 shows each of the events in Table 15-2 with their respective
probabilities.

Event (in words) Event (as a set) Probability )
Toss 2 or more heads. {HHT,HTH,THH, HHH} 4/8 = 1/2
Toss more than 2 heads. {HHH} 1/8
Toss 2 heads or fewer. {ITT,TTH, THT,HTT,THH, HTH, HHT} 7/8
Toss no tails. {HHH} 1/8
Toss exactly 1 tail. {HHT,HTH,THH} 3/8
Toss exactly 1 head. {HTT,THT,TTH} 3/8
First toss is heads. {HHH,HHT,HTH,  HTT} 4/8 =1/2
Toss same number of heads as tails. {} (Note:This is the impossible event.) 0

| Toss 3 heads or fewer. S (Note: This event is called the certain event.) 1
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Rolling a Pair of Honest Dice

This example is a follow-up of Examples 15.4 and 15.5. Imagine that you are play-
ing some game that involves rolling a pair of honest dice, and the only thing that
matters is the total of the two numbers rolled. As we saw in Example 15.4 the
sample space in this situation is § = {2,3,4,5,6,7,8,9,10,11, 12}, where the
outcomes are the possible totals that could be rolled. This sample space has
N = 11 possible outcomes, but the outcomes are not equally likely, so it would be
wrong to assign to each outcome the probability 1/11. In fact, most people with
some experience rolling a pair of dice know that the likelihood of rolling a 7 is
much higher than that of rolling a 12.

How can we find the exact probabilities for the various totals that one might
roll? We can answer this question by considering the sample space discussed in
Example 15.5, where every one of the N = 36 possible rolls is listed as a separate
outcome (see Fig. 15-1 in Example 15.5). Because the dice are honest, each of
these 36 possible outcomes is equally likely to occur, so the probability of each is
1/36. Now we have something!

Table 15-5 shows the probability of rolling a 2, 3,4, .. ., 12. In each case
the numerator represents the number of ways that particular total can be rolled.
For example, the event “roll a 7” consists of six distinct possible rolls:

{DBOECPBEEFEHE) Thus, the probability of “rolling a 7” is

6/36 = 1/6.The other probabilities are computed in a similar manner.

R

Event Probability )
“Rolla2”:{(-] Bl 1/36
“Rolla3”:{-| MN.[.° ) 2/36
“Rolla4”: {{-] K4.[.71 NN, B} 3/36
“Rolla 5”: {(~ | H8.[.°T K&, [T HN. B} 4/36
“Roll a 6”: (-] BH,[. T HE, [ K&, 2] NN, [~ B} 5/36
“Roll a7”: (-] BB, B8, [ W, (< B, (=) M, ¢ D) 6/36
“Roll an 8”: {[. ] BB, ("] KR, [ B8, [ K&.[ ¥ WH)) 5/36
“Roll a 9”: {*] BB, [% BH, [ H.[ 1) KA} 4/36
“Roll a 10”: {3 BB, [ BH, 13 HE) 3/36
“Roll an 117: ([ BB, i BH) 2/36

| “Rolla 12 E: 3} 1/36 |

| e

Rolling a Pair of Honest Dice: Part 2

Once again, we are rolling a pair of honest dice. We are now going to find the
probability of the event E: “at least one of the dice comes up an ace.” (In dice jar-
gon,a [+] is called an ace.)
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This is a slightly more sophisticated counting question than the ones in
Example 15.20. We will show three different ways to answer the question.

m Tallying. We can just write down all the individual outcomes in the event E
and tally their number. This approach gives

E={JaCROBOB OB HBOB OB FE A

and Pr(E) = 11/36. There is not much to it, but in a larger sample space it
will take a lot of time and effort to list every individual outcome in the
event.

® Complementary Event. Behind this approach is the germ of a really important
idea. Imagine that you are playing a game, and you win if at least one of the
two numbers comes up an ace (that’s event E'). Otherwise you lose (call that
event F). The two events E and F are called complementary events, and E is
called the complement of F (and vice versa). The key idea is that the proba-
bilities of complementary events add up to 1. Thus, when you want Pr(E) but
it’s actually easier to find Pr(F), then you first do that. Once you have Pr(F),
you are in business: Pr(E) = 1 — Pr(F).

Here we can find Pr(F') by a direct application of the multiplication prin-
ciple. There are 5 possibilities for the first die (it can’t be an ace but it can be
anything else) and likewise there are five possibilities for the second die. This
means that there are 25 different outcomes in the event F, and thus
Pr(F) = 25/36. It follows that Pr(E) = 1 — (25/36) = 11/36.

® Independent Events. In this approach, we look at each die separately and, as
usual, pretend that one die is white and the other one is red. We will let F
denote the event “the white die does not come up an ace” and F, denote the
event “the red die does not come up an ace.” Clearly, Pr(F; ) = 5/6 and
Pr(F,) = 5/6. Now comes a critical observation: The probability that both
events F; and F, happen can be found by multiplying their respective proba-
bilities. This means that Pr(F) = (5/6) X (5/6) = 25/36. We can now find
Pr(E) exactly as before: Pr(E) = 1 — Pr(F) = 11/36. —

Of the three approaches used in Example 15.20, the last approach appears to
be the most convoluted, but, in fact, it is the one with the most promise. It is based
on the concept of independence of events. Two events are said to be independent
events if the occurrence of one event does not affect the probability of the occur-
rence of the other. When events E and F are independent, the probability that
both occur is the product of their respective probabilities; in other words,
Pr(E and F) = Pr(E) - Pr(F). This is called the multiplication principle for inde-
pendent events.

The multiplication principle for independent events in an important and use-
ful rule, but be forewarned—it works only with independent events! For events
that are not independent, multiplying their respective probabilities gives us a
bunch of nonsense.

Our next example illustrates the real power of the multiplication principle
for independent events. As we just mentioned, this principle can only be applied
when the events in question are independent, and in many circumstances this is
not the case. Fortunately, in the examples we are going to consider the indepen-
dence of the events in question is intuitively obvious. For example, if we roll an
honest die several times, what happens on each roll has no impact whatsoever on
what is going to happen on subsequent rolls (i.e., the rolls are independent
events).
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Rolling a Pair of Honest Dice: Part 3

Imagine a game in which you roll an honest die four times. If at least one of your
rolls comes up an ace, you are a winner. Let £ denote the event “you win” and F
denote the event “you lose.” We will find Pr(E) by first finding Pr(F), using the
same ideas we developed in Example 15.21.

We will let Fq, F5, I3, and F, denote the events “first roll is not an ace,” “sec-
ond roll is not an ace,” “third roll is not an ace,” and “fourth roll is not an ace,”
respectively. Then

Pr(F) =5/6, Pr(F) =5/6, Pr(F;) =5/6, Pr(F,) =5/6
Now we use the multiplication principle for independent events:
Pr(F) = (5/6) x (5/6) % (5/6) X (5/6) = (5/6)* ~ 0.482
Finally, we find Pr(E):
Pr(E) =1 — Pr(F) = 0.518 (]

Five-Gard Poker Hands: Part 2

One of the best hands in five-card draw poker is a four-of-a-kind (four cards
of the same value plus a fifth card called a kicker). Among all four-of-a-kind
hands, the very best is the one consisting of four aces plus a kicker. We will let
F denote the event of drawing a hand with four aces plus a kicker in five-card
draw poker. (The Fstands for “fabulously lucky.”) Our goal in this example is
to find Pr(F).

The size of our sample space is N = 5,Cs = 2,598,960 (see Example 15.13).
Of these roughly 2.6 million possible hands, there are only 48 hands in F: four of
the five cards are the aces; the kicker can be any one of the other 48 cards in the
deck. Thus, Pr(F) = 48/2,598,960 =~ 0.0000185, roughly 1in 50,000. D

The Sucker’s Bet

Imagine that a friend offers you the following bet: Toss an honest coin 10 times. If
the tosses come out in an even split (5 Heads and 5 Tails), you win and your
friend buys the pizza; otherwise you lose (and you buy the pizza). Sounds like a
reasonable offer —let’s check it out.
 You may want to think about We are going to let E denote the event “5S Heads and 5 Tails are tossed,” and
this probability and take a guess we will compute Pr(E). We already found (Example 15.7) that there are
ggfgﬂfp%?:egei?]gg@ yszlé rtnh'ght N = 1024 equally likely outcomes when a coin is tossed 10 times and that each of
answer. these outcomes can be described by a string of 10 Hs and T's.
We now need to figure out how many of the 1024 strings of H's and 7's have 5
Hs and 5 Ts. There are of course, quite a few: HHHHHTTTTT, HTHTHTHTHT,
TTHHHTTTHH, and so on. Trying to make a list of all of them is not a very prac-
tical idea. The trick is to think about these strings as 10 slots each taken up by an
H or a T, but once you determine which slots have H's you automatically know
which slots have Ts. Thus, each string of 5 Hs and 5 T is determined by the choice
of the 5 slots for the Hs. These are unordered choices of 5 out of 10 slots, and the
number of such choices is 1;C5; = 252.
Now we are in business: Pr(E) = 252/1024 ~ 0.246.
The moral of this example is that your friend is a shark. When you toss an
honest coin 10 times, about 25% of the time you are going to end up with an even
split, and the other 75% of the time the split is uneven. —_

e 1Y




CONCLUSION

While the average citizen thinks of probabilities, chances, and odds as vague, in-
formal concepts that are useful primarily when discussing the weather or playing
the lottery, scientists and mathematicians think of probability as a formal frame-
work within which the laws that govern chance events can be understood. The
basic elements of this framework are a sample space (which represents a precise
mathematical description of all the possible outcomes of a random experiment),
events (collections of these outcomes), and a probability assignment (which asso-
ciates a numerical value to each of these events).

Of the many ways in which probabilities can be assigned, a particularly impor-
tant case is the one in which all individual outcomes have the same probability
(equiprobable spaces). When this happens, the critical steps in calculating probabili-
ties revolve around two basic (but not necessarily easy) questions: (1) What is the
size of the sample space, and (2) what is the size of the event in question? To answer
these kinds of questions, knowing the basic principles of “counting” is critical.

When we stop to think how much of our lives is ruled by fate and
chance, the importance of probability theory in almost every walk of life is

His Sacred Majesty, Chance, hardly surprising. Understanding the basic mathematical principles behind

decides everything.

this theory can help us better judge when taking a chance is a smart move
and when it is not. In the long run, this will make us not just better card

—Voltaire  players, but also better and more successful citizens.
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Conclusion

Persi Diaconis (1945— )

Persi Diaconis picks up an g

ordinary deck of cards, fresh
from the box, and writes a word in Magic
Marker on one side: RANDOM. He shuffles
the deck once. The letters have re-formed
themselves into six bizarre runes that still
look vaguely like the letters R, A, and so on.
Diaconis shuffles again, and the markings
on the side become indecipherable. After
two more shuffles, you can’t even tell that
there used to be six letters. The side of the
pack looks just like the static on a television
set. It didn’t look random before, but it sure
looks random now.

Keep watching. After two more shuffles,
the word RANDOM miraculously reappears
on the side of the deck—only it is written
twice, in letters half the original size. After
one more shuffle, the original letters materi-
alize at the original size. Diaconis turns the
cards over and spreads them out with a ma-
gician’s flourish, and there they are in their
exact original sequence, from the ace of
spades to the king of diamonds.

Diaconis has just performed eight perfect
shuffles in a row. There’s no hocus-pocus, just
skill perfected in his youth: Diaconis ran away
from home at 14 to become a magician’s as-
sistant and later became a professional magi-
cian and blackjack player. Even now at 57, he
is one of a couple of dozen people on the
planet who can do eight perfect shuffles in
less than a minute.

Diaconis’s work these days involves
much more than nimbleness of hand. He is a
professor of mathematics and statistics at
Stanford University. But he is also the world’s
leading expert on shuffling. He knows that
what seems to be random often isn’t, and he
has devoted much of his career to exploring
the difference. His work has applications to
filing systems for computers and the reshuf-
fling of the genome during evolution. And it
has led him back to Las Vegas, where, instead of trying to
beat the casinos, he now works for them.

A card counter in blackjack memorizes the cards that
have already been played to get better odds by making bets
based on his knowledge of what has yet to turn up. If the
deck has a lot of face cards and 10’s left in it, for instance,
and he needs a 10 for a good hand, he will bet more because
he’s more likely to get it. A good card counter, Diaconis esti-
mates, has a 1 to 2 percent advantage over the casino. On a
bad day, a good card counter can still lose $10,000 in a hurry.
And on a good day, he may get a tap on the shoulder by a

(b) )

(2

(d) )

large person who will say, “You can call it a day now.” By his
mid-twenties, Diaconis had figured out that doing mathemat-
ics was an easier way to make a living.

Two years ago, Diaconis himself got a tap on the shoul-
der. A letter arrived from a manufacturer of casino equip-
ment, asking him to figure out whether its card-shuffling
machines produced random shuffles. To Diaconis’s sur-
prise, the company gave him and his Stanford colleague,
Susan Holmes, carte blanche to study the inner workings
of the machine. It was like taking a Russian spy on a tour
of the CIA and asking him to find the leaks.
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When shuffling machines first came out, Diaconis
says, they were transparent, so gamblers could actually
see the cutting and riffling inside. But gamblers stopped
caring after a while, and the shuffling machines turned
into closed boxes. They also stopped shuffling cards the
way humans do. In the machine that Diaconis and Holmes
looked at, each card gets randomly directed, one at a
time, to one of 10 shelves. The shuffling machine can put
each new card either on the top of the cards already on
the shelf or on the bottom, but not between them.

“Already | could see there was something wrong,”
says Holmes. If you start out with all the red cards at the
top of the deck and all the black cards at the bottom, after
one pass through the shuffling machine you will find that
each shelf contains a red-black sandwich. The red cards,
which got placed on the shelves first, form the middle of
each sandwich. The black cards, which came later, form
the outside. Since there are only 10 shelves, there are at
most 20 places where a red card is followed by a black
one or vice versa—fewer than the average number of
color changes (26) that one would expect from a random
shuffle.

The nonrandomness can be seen more vividly if the
cards are numbered 1 to 52. After they have passed through
the shuffling machine, the numbers on the cards form a
zigzag pattern. The top card on the top shelf is usually a
high number. Then the numbers decrease until they hit the
middle of the first red-black sandwich; then they increase
and decrease again, and so on, at most 10 times.

Diaconis and Holmes figured out the exact probability
that any given card would end up in any given location
after one pass through the machine. But that didn’t indi-
cate whether a gambler could use this information to beat
the house.

So Holmes worked out a demonstration. It was based on
a simple game. You take cards from a deck one by one and
each time try to predict what you've selected before you look
at it. If you keep track of all the cards, you'll always get the
last one right. You'll guess the second-to-last card right half
the time, the third-to-last a third of the time, and so on. On
average, you will guess about 4.5 cards correctly out of 52.

By exploiting the zigzag pattern in the cards that pass
through the shuffling machine, Holmes found a way to double
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the success rate. She started by predicting that the highest
possible card (52) would be on top. If it turned out to be 49,
then she predicted 48—the next highest number—for the
second card. She kept going this way until her prediction
was too low—predicting, say, 15 when the card was actually
18. That meant the shuffling machine had reached the bot-
tom of a zigzag and the numbers would start climbing again.
So she would predict 19 for the next card. Over the long run,
Holmes (or, more precisely, her computer) could guess nine
out of every 52 cards correctly.

To a gambler, the implications are staggering. Imag-
ine playing blackjack and knowing one-sixth of the cards
before they are turned over! In reality, a blackjack player
would not have such a big advantage, because some
cards are hidden and six full decks are used. Still, Diaco-
nis says, “I’m sure it would double or triple the advantage
of the ordinary card counter.”

Diaconis and Holmes offered the equipment manu-
facturer some advice: Feed the cards through the ma-
chine twice. The alternative would be more expensive:
Build a 52-shelf machine.

A small victory for shuffling theory, one might say.
But randomization applies to more than just cards. Evolu-
tion randomizes the order of genes on a chromosome in
several ways. One of the most common mutations is
called a “chromosome inversion,” in which the arm of a
chromosome gets cut in two random places, flipped over
end-to-end, and reattached, with the genes in reverse
order. In fruit flies, inversions happen at a rate of roughly
one per every million years. This is very similar to a shuf-
fling method called transposition that Diaconis studied
20 years ago. Using his methods, mathematical biolo-
gists have estimated how many inversions it takes to get
from one species of fruit fly to another, or to a completely
random genome. That, Diaconis suggests, is the real
magic he ran away from home to find. “I find it amazing,”
he says, “that mathematics developed for purely aesthetic
reasons would mesh perfectly with what engineers or
chromosomes do when they want to make a mess.”

Source: Reprinted by permission from Dana Mackenzie,
“The Mathematics of Shuffling,” Discover (October 2002),
pp- 22-23.
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