Problem: Bank Service Problem

The bank manager is trying to improve customer satisfaction by offering better service. Management
wants the average customer to wait less than 2 minutes for service and the average length of the queue
(length of the waiting line) to be 2 persons or fewer. The bank estimates it serves about 150 customers per
day. The existing arrival and service times are given in the tables below.

Time between arrival (min.) Probability

0.10

0.15

0.10

0.35

AIWINFRL[|O

0.25

5 0.05

Table 1: Arrival times

Service Time (min.) | Probability
1 0.25
2 0.20
3 0.40
4 0.15

Table 2: Service times

(1) Build a mathematical model of the system.

(2) Determine if the current customer service is satisfactory according to the manager guidelines. If not,
determine, through modeling, the minimal changes for servers required to accomplish the manager’s
goal.

(3) In addition to the contest’s format, prepare a short 1-2 page non-technical letter to the bank’s
management with your final recommendations.
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Problem B

Businesses are always looking for ways to improve customer satisfaction so that they can
attract new customers and retain old ones. In order to accomplish this, a specific bank manager
would like to reduce the average time customers spend waiting for services to less than 2 minutes
and the average length of the waiting line to less than 2 people. We developed a two part model
capable of determining the minimal changes necessary to meet the manager’s requirements.

The first part of our model was a purely theoretical approach. We derived a discrete-time
equivalent of Lindley’s equation, which is typically used to simulate continuous time queues,
and created a recurrence relation that allowed us to find the probability distribution of wait
times for any given customer. We then used these distributions to provide an exact value for the
average waiting time for customers. This approach, however, is not capable of testing data with
multiple servers and also does not directly yield the average queue length.

The second part of our model was a computational approach, which we used to test more
complex scenarios and find the average queue length. We created an algorithm to simulate the
bank’s day-to-day operations and then tested our simulation by running multiple trials and
comparing the resulting frequency distributions with the theoretical probability distributions. We
found that the average waiting times derived from the two approaches agreed to within 0.164
percent. This indicated that our computer simulation could approximate the theoretical values
with high accuracy, allowing us to extend our simulation to test the impact of adding new
servers, as well as the addition of “emergency” servers who only serve customers when the
queue length exceeds a predetermined limit.

Using our model, we determined that the bank’s current system limits the average queue
size to a relatively small 1.8 customers, but the average customer waits about 5 minutes for
service, and some customers wait as long as 8 minutes. We tested two ways to reduce the mean
wait time, choosing to also measure server idle time, the amount of time a server spends not
helping a customer, in order to determine which method would be more efficient. By modifying
the bank’s system to use two servers simultaneously, we were able to decrease the average wait
time to about 6 seconds and reduce the average queue length to 0.04 customers, but we also
greatly increased the time servers spent doing nothing from 37 minutes to 430 minutes (more
than 7 hours). By adding an emergency server who would only begin serving customers when
the queue reached 3 customers, however, we were able to reduce the wait time to 1.46 minutes
and the queue length to 0.55 customers while keeping the idle time to a more reasonable 62
minutes. Furthermore, this change would only require the emergency server to work for about 40
minutes each day, a relatively minimal change. Our model shows that adding a second
“emergency” server is the most efficient method to reduce average customer wait times and
average queue length to within the requirements.
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Solution Paper (Problem B)

Introduction

Customer satisfaction is of vital importance for companies whose customers frequently interact
with company employees, especially when many other companies in the area offer competitive
services. In the banking industry, the waiting time for a given customer before they are served
and the length of the line are two factors that can greatly affect whether or not a customer has
a pleasant experience. Unfortunately, due to the unpredictable nature of customer arrivals and
the varying time required to serve each customer, it can be difficult to determine whether a
current system is satisfactory. In this paper we provide two methods to model these factors and
propose a strategy for a bank to raise customer satisfaction with minimal changes to its current
system.

Problem Restatement

A bank is attempting to improve customer satisfaction by offering better service to its
customers. Specifically, the management wants to ensure that on average, customers wait no
longer than 2 minutes before receiving service and the waiting line is no more than 2 people
long. We are provided the probability distribution of the difference between customer arrival
times (ranging from 0-5 minutes) and the probability distribution of the time it takes for the
bank to serve a customer (ranging from 1-4 minutes). Using these probabilities and assuming
that 150 customers arrive at the bank each day to receive service from only one server (teller),
we are tasked with establishing whether or not the bank’s current system is satisfactory. If
necessary, we can then determine the minimal changes for servers required to accomplish the
management’s goal.

Assumptions
Customers only arrive at the bank and are served at exact minute intervals.
Justification: The data given to us is only applicable by the minute, so estimating data
and probabilities in between minutes is impossible.

Customers are served in the order they arrive at the bank.
Justification: Most lines (queues in general) work this way. This is necessary in order to
properly count the waiting time of customers.

Servers work continuously until all 150 customers have been served (no breaks), and the
time difference between serving customers is negligible.
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Justification: As soon as one customer is done being served, the next customer should
immediately begin receiving service in order to keep times on the minute.

The service time data provided corresponds to the rate of service of a single server, and
this single server serves all the customers in the original service system.

Justification: The provided data implies that there is only one line and one server, and
the rate of service for a single server needs to be consistent for us to create a model.

Multiple servers work at the same rate.
Justification: Servers need to all work at the same rate given to us in order for us to be
able to predict the outcome of waiting times and the length of the queue.

The time for an “emergency” (back-up) server to begin servicing customers from when
he or she is called is two minutes.

Justification: It is not practical for someone to immediately begin working when they are
called, so we added a two minute delay period during which the worker would be
transitioning.

For the purposes of our model, we will also define the following:
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Customers are numbered from 1 to 150 in the order that they arrive.

The queue is the line in which the customers stand waiting to be served.

A server is a person who is capable of providing service to customers

All times are measured in minutes unless otherwise specified.

An emergency server is a server that only begins working whenever the queue length
exceeds a predetermined limit and stops working whenever the queue is empty.
Jenter is the length of the queue before an emergency server begins to provide service to
customers.

A probability mass function, or PMF, is the discrete-time equivalent of a probability
density function. A PMF gives the probability that a random variate is exactly equal to
any given integer value [2]. For example, if Fis a PMF, then F(x) = P(f = x).

Designing the Mathematical Model
We approach the problem from two different approaches: one using purely mathematical

methods which yields exact theoretical results and one using a computer simulation that yields

approximate results for more complex situations.

Purely Theoretical Approach
The problem can be interpreted as a discrete-time version of a G/G/1 queue (a queue with two

separate non-exponential probability distributions that determine when people and leave the
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and with a single server). In general, a continuous-time G/G/1 queue can be modeled

using Lindley’s integral equation [1], given by

o

W(x) = f Ux—y)dW(y), x =0

0~

W(x) is the probability that the nth customer waits for no more than x minutes as n
tends to infinity

U(x) is the probability that the difference between the previous customer’s service time
and the nth customer’s arrival time is less than or equal to x minutes as n tends to
infinity

dW(y) is the infinitesimal probability that the nth customer waits for exactly y minutes
as ntends to infinity

We derive a discrete-time equivalent of this equation to find the theoretical waiting time

distribution of any given customer. We decided to compute the discrete-time version using

probability mass functions instead of cumulative density functions, as we are given tables that

match discrete time intervals with probabilities. Also, as we were given an explicit estimate of

number of consumers, we decided not to take the limit as customer number -> infinity, but

instead calculate each customer’s wait-time distribution separately. We found that the

distribution of waiting times for the nth customer can be found solely on the basis of the

distribution of waiting times for the previous customer and the data provided in Tables 1 and 2.

The following formula summarizes our relation:

where

¢ max(wy_s}
Z W, (DU — D) ify >0
i=0

VVn(}’) = < maX{Wn_l} jmax

> (W@ ui-p | iy =0
7=0

[Eqn. 2]

\ i=0

max{w,.1} is the maximum possible wait time of the (n-1)th customer

W,(y) is the probability that the nth customer waits exactly y minutes

U(x) is a probability mass function that gives the probability that s, —t, = x, where s, 1
is the service time of the (n-1)th customer and t, is the time interval between arrivals of
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the (n-1)th and nth customers. It can be directly constructed from the provided
probability distributions in Tables 1 and 2.

jmax IS @ constant indicating the maximum time in minutes between the end of the nth
customer’s service and the arrival of the (n+1)th customer. Given the provided data, we
can set jmax= 4.

The full derivation of this recursive relation from the given data can be found in Appendix A.

Given the initial condition that W4(0) = 1 (the first customer has a 100% chance of having no
wait time), we can then use these two recurrence relations to generate W,(x) for each n > 1.
This in essence allows us to construct probability distributions of the wait times for any
customer arriving at the bank. Once we have computed W;(x), ... Wiso(x), we can compute the
average waiting time of the nth customer by treating W,, as the weights for a weighted average
of the integer waiting times, as shown below.

max {wWn}

o= ) WD)
i=0

We can then find the average waiting time of all customers by taking the mean of
V_Vl, Wz ...,Vl_/150 .

This purely theoretical approach provides an exact mathematical formulation for the average
waiting time of customers on a given day and can be extended to accommodate for cases with
an arbitrary number of people or different probability distributions. However, the complexity of
evaluating Wy(x) quickly escalates as n increases, making it relatively unfeasible to evaluate for
large n, and this approach also cannot easily incorporate multiple servers working
simultaneously. Additionally, this purely mathematical method only finds the average waiting
time for each customer in the queue, which cannot easily be converted into the mean queue
length.

Computational Approach

In order to simulate more complex circumstances (specifically the effects of adding more
servers) and estimate the mean queue length, it is much more feasible to analyze the results of
multiple computer simulation trials. We designed a computer model based on state transitions
at each discrete time step: at any given minute, customers arrive at the bank, customers finish
being served, other customers begin being served, and emergency servers transition between
serving as tellers and performing other tasks.

We differentiate between two types of servers: regular servers, who are ready to accept
customers at all times, and emergency servers, who usually perform other, non-customer-
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service tasks but can act as regular servers if needed, but only after some constant transition

period.

We simulate the bank queue using the following algorithm:

1. All 150 customers are initialized, each with randomly determined t (time between

arrival of previous customer and arrival of current customer) and s (service time).

2. Using ty, ty, ... t1so, the arrival time a is computed for all the customers using cumulative

summation.

3. An internal clock variable time is set to O minutes. All customers are placed into a

customer queue, and a list of servers is created.

4. Perform the following procedure until all consumers are served, the waiting queue is

empty and no customers are in service:

a.

f.

All customers who were calculated to arrive at this time step (a = time) are
removed from the customer queue and added to the waiting queue.

All servers decrease their service counters by one. If the counter reaches 0,
remove the currently served customer and mark the server as inactive (not
serving a customer).

For every emergency server in the server list, increment the emergency-server-
time-spent counter.

For every server that is currently inactive:

i. If this server is an emergency server and the waiting queue is smaller
than the emergency server’s exit queue length, mark the emergency
server for removal from the server list.

ii. Otherwise, if there is anyone waiting in the waiting queue, remove the
next customer from the waiting queue and record their waiting time (the
difference between time and a). Set this server as active and set their
service counter to s (the time this customer will be served for)

iii. If there is no one waiting in the queue and this server is not an
emergency server (in other words, if this server remains inactive),
increment the idle-time counter.

If there are emergency servers not on duty and the queue is larger than or equal
to the emergency enter queue length, add an emergency server to the server list
and decrement the number of not-on-duty emergency servers. Give this
emergency server a service time equal to the transition time, as this server will
be unable to accept a customer until after the transition.

Record current values of queue length.

At the end of every run, the average queue length for that “day” can be found by summing up

all the recorded queue lengths and dividing by the final value of time. Similarly, the average
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wait time for each customer can be found by averaging the w's for all of the customers. In this
way, our simulation accurately models the proceedings of a random day at the bank, and its
versatility allows it to be easily extended to fit new circumstances, such as the addition of new
servers or changes in server efficiency. However, because our algorithm simply produces a
single random outcome during each run, it can only approximate the true average wait time.
Multiple trials thus become essential to increasing the confidence of our results.

By comparing our experimental distribution with our theoretical distribution for cases involving
only one server, we can determine the veracity and accuracy of our experimental results,
allowing us to proceed in cases that the theoretical approach cannot handle with greater
confidence. The full python script used to generate our data is included in Appendix C.

Model Data and Testing

Using Wolfram Mathematica, we iteratively evaluated the recurrence relations in Equations 2a
and 2b from the starting point W1(0) = 1, and found the average wait time w to be 4.92761
minutes. We also computed the probability mass distribution W (x) (average probability that
any customer waits x minutes) taking the average of each customer’s wait time distributions.
The theoretical values of W (x) can be found in Table 5 of Appendix B. Interestingly, with the
given probabilities for differences in arrival time and service time, there is a W(0) = 25.08%
chance that any given customer is served immediately, indicating that over one quarter of
customers should not have to wait even if only one server is present.

Experimentally, we ran our computer simulation 10000 times, recording the wait times for
every customer and the average queue length for each trial. Plotting the experimental wait
times against the theoretical wait times (W (x)), we can see that the two distributions match
each other almost exactly - the data points for the theoretical values are hardly even visible
(Figure 1). A more detailed comparison of the theoretical and experimental values can be found
in Table 5 of Appendix B.
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Comparison of theoretical and experimental
probabilities for wait time in a 150 customer day
with one server
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Figure 1: A comparison of the theoretical and experimental probability distributions for average
customer wait time on a 150 customer day with only one server available. Notice that the two graphs
match each other almost exactly, indicating that our computational simulation has a high accuracy when
run over 10,000 trials. The only significantly visible error is the slightly higher experimental value for wait
time 0.

We computed the average wait time for the theoretical distribution to be 4.92761 min.,
whereas the average wait time for the experimental distribution over 10000 trials evaluated to
4.9195 min., a difference of only 0.164%. With this level of accuracy, we can safely extend our
computer simulation into cases with multiple servers without having to worry about insufficient
confidence levels.

Because our theoretical model is incapable of evaluating average queue times, we assumed
that our simulation’s accuracy in average wait times is indicative of overall accuracy, especially
accuracy in average queue length, as the two quantities are closely related. Though this
assumption is not entirely justified, strong correlation between the theoretical and
experimental wait times still helps to support the validity of our computation model.

With only one server available, the experimental average queue length evaluated to 1.84773, a
value already less than the 2 persons or fewer goal desired by the manager. Because our
average wait time of 4.92761 minutes per customer is considerably over 2 minutes, however, a
strategy must be adopted to help reduce this average wait time. Furthermore, the standard
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deviation of average wait times on each given day is 3.30591 minutes, indicating that the wait
times vary greatly between days.

Potential Changes
We tested two different changes in server structure in order to reduce the average customer
wait time:

1. Increase the number of servers

| "

2. Have additional “emergency” servers that only work when queue length exceeds a

certain number

Strategy 1: Increase the number of servers

By introducing only one additional server to the bank, we can drastically reduce both the
average queue length and average wait time of customers. Using our computer simulation, we
obtained an average wait time of 0.11285 minutes (about 6.77 seconds) and an average queue
length of 0.043093, well within the 2 minute and 2 customer bounds specified. Furthermore,
the standard deviation of the daily average wait times is a negligible 0.06283 minutes (about
3.8 seconds), indicating that the wait time is very consistently small. However, note that when
two servers are assigned there is a large period of time for which one or both of the servers are
idle (on average 429.8945 server-minutes, or 7.165 server-hours), resulting in a greatly reduced
work efficiency. This data is summarized in Table 1.

Mean wait time Mean queue length Mean server idle time
Full-time server 0.112851 0.043093 429.8945
Table 1: A summary of the mean statistics for the addition of a full-time server. A full-time server lowers

both the wait time and queue length well below the manager’s goals, but significantly increases the
amount of time servers spend idling, reducing in greatly reduced worker efficiency.

From the perspective of a manager, adding another dedicated (full-time) server would
definitely reduce the average queue length and wait time to values below his/her desired goals,
but at the same time this strategy would waste money on hiring a full-time server who would
only work for a small percentage of the total time.

Strategy 2: Add an emergency server

Unlike a dedicated server, an emergency server only begins working when the queue length
exceeds a predetermined limit (genter) and continues to work until no customers remain in the
gueue. Because it would be unreasonable for an emergency server to switch between tasks
instantaneously, we added a two minute transition delay before the emergency server could
begin his/her duties as server into our simulation.
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We tested various values of gener to minimize the amount of time the emergency server spends
serving customers while still keeping the average wait time below two minutes. Using our
computer simulation, we obtained average wait times and average queue lengths for the two
minute and two customer bounds specified. While adding an emergency server also creates
time for which the dedicated server is idle, this idle time is much less than that in strategy one.
By setting Genter to 3 customers, we can minimize the average server downtime to only 61.7
minutes while still satisfying the manager’s desired conditions. Our results are summarized in
Table 2:

Genter Mean Mean customer | Mean queue | Average number of Mean server
emergency wait time length times emergency | idle time
server use time server is called

2 64.7958 0.927046667 0.35010662 | 10.7512 75.2787

8
3 38.5827 1.464951 0.552342 4.6354 61.7095
4 25.0496 2.034833 0.7677 2.3729 53.0709

Table 2: A comparison of three values of gener for an emergency server. The emergency server with gepzer
= 3 meets the established requirements of the manager while minimizing the mean server idle time and
time spent by the emergency server providing services.

Comparison of Strategies

Overall, adding an emergency server with gener = 3 keeps the average wait time under two
minutes and the average queue length to at most two customers while limiting the time that
additional server provides service to an average of only 38.5 minutes each day and keeping the
server idle time to a reasonable 61.7 minutes. This makes adding an emergency server the
minimal change for servers required to accomplish the manager’s goal. A comparison of the
approaches for an emergency server, the simple additional server, and the original single server
are shown below in Table 3, and graphical representation comparing the distribution of
customer wait times for these three strategies can be found in Figure 3 of Appendix B.

Mean total server | Mean additional Mean customer Mean queue
idle time server work time | wait time length
(customers)
Single server 36.8365 min n/a 4.91953 min 1.847728
Emergency server | 61.7095 min 38.5827 min 1.464951 min 0.552342
(qenter = 3)
Full-time second ' 429.8945 min 397.6912 min 0.112851 min 0.043093
server

Table 3: A comparison of three different service systems. Note that the emergency server meets the
goals required by the manager while minimizing the mean total server idle time.

Note that while adding a full-time server significantly reduces the mean wait time and mean
gueue length, adding a single emergency server with genter = 3 is sufficient to meet the
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manager’s requirements while significantly reducing the total amount of time each server
spends idle.

Sensitivity Analysis

We also attempted to determine how sensitive our model was to differing parameters, as
fluctuations in the measurement of the bank’s original data might make the calculated values
significantly different. Additionally, on any given day, the probabilities may vary slightly due to
external events.

To determine how our model responds to these fluctuations, we ran our model using sets of
slightly different probabilities. Our model proved to be very sensitive to small changes in
probability. For the single-server case, after increasing the rate of customer arrivals by shifting
5% of the arrival time distribution, the average customer wait time increased to 8.2 minutes,
and after decreasing the rate of customer arrival the wait time decreased to 3.1 minutes.
Modifying the service times in a similar fashion caused wait time to fluctuate between 6.0
minutes and 4.0 minutes. Making larger changes to the frequency distributions led to even
larger changes, in one case even raising average customer waiting time to 57 minutes.

When we tested these different distributions with the presence of an emergency server,
however, the time fluctuations were greatly reduced. The small changes to probability
distribution barely affected the average wait time, which stayed between 1.3 and 1.6 minutes
on average. Even the large change that caused the single-server case to increase to 57 minutes
only increased the waiting time to 2.3 minutes when an emergency server was present. Further
details of these fluctuations can be found in Appendix D.

These results reveal that the single-server system currently in place depends greatly on the
distribution of customer arrival times and service durations. This makes sense, as if the single
server cannot keep up with the customer arrivals, the queue quickly grows and increases the
waiting times of many customers. When an emergency server is present, however, these
fluctuations can be greatly reduced because the second server is ready to step in once the
gueue increases in length. This demonstrates that our recommended emergency server system
is capable of effectively adapting to different circumstances and random variation.

Strengths of Our Model
Our model uses both theoretical and computational methods to generate our data. The
theoretical approach is based on purely mathematical methods, ensuring that its results
are exact. The computational method is based on a computer program, making it easily
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adaptable to varying conditions such as an increased number of servers, different rates
of entry and exit, and the addition of emergency servers.

Our computational method produces results nearly identical to the theoretical method
when tested on the single server situation. This strongly verifies the precision and
accuracy of our data and allows us to apply our computation model to different
situations with high confidence.

We consider two possible methods of increasing customer satisfaction rather than
merely one. Our model allows us to generate concrete data and easily determine which
change is more satisfactory using metrics including server idle time, average queue
length, and average waiting time. This ensures that our suggested changes are both
practical and effective.

Our model can easily be adapted to use different probability distributions, which makes
it applicable to multiple situations, including queues at other banks or at different types
of business.

Because our model produces a probability distribution for average customer wait times
as a by-product, businesses can extract other meaningful information about wait times
from it, including, for instance, the probability that a customer will have to wait for
more than 10 minutes.

Weaknesses of Our Model

We do not have any way to find exact theoretical values for the queue length
distribution, so we have to approximate these values through our computer simulation,
which can only approximate the true values.

Due to the discrete data that the bank gives us, our model cannot account for events
that occur in between minutes. This space of time is considerable, especially in
comparison to the two minute restriction imposed by the manager, as many different
events that significantly affect the inputs of our model can occur within these time
windows.

Our model is unable to account for different rates of customer influx, such as more
frequent arrivals during rush hour and less frequent arrivals during lunch time.

We do not consider other potential methods of increasing customer satisfaction, such as
training workers to reduce service times.

Conclusion
We model the bank service queue using two different approaches: purely theoretical

mathematics and computational simulation. By utilizing a series of recurrence relations on

several probability mass distributions derived from the given data, we can compute the exact
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average waiting time for queues with a single server. However, because this method is
incapable of taking into consideration multiple servers and cannot compute the average queue
length, we also utilize a computer program which is capable of stochastically simulating the
proceedings of any one day. By comparing the theoretical and computational results for a
queue with a single server, we are able to verify the reliability and accuracy of our
computational model from the nearly identical wait time distributions and average wait times.
With this increased confidence, we can extend our computational model to incorporate cases
that our theoretical approach cannot handle, such as the addition of new full-time servers or
emergency servers, while also estimating the average queue length by averaging over multiple
trials.

Our computational model suggests that the best method for management to satisfy the given
requirements (at most an average queue length of 2 and at most an average wait time per
customer of 2 minutes) would be to implement a single emergency server who would only
begin working when the queue length exceeded 3 customers. If this is not feasible, adding an
additional server would also reduce the average queue length and average wait time
significantly below the manager’s requirements, though this approach would result in a
significant amount of server idle time and thus reduced worker efficiency. The emergency
server would only need to provide service for customers for an average of about 40 minutes
per day, leaving plenty of time to accomplish other tasks that a full-time server would not be
capable of completing. This makes using a single emergency server more profitable for the
bank. Additionally, during the time when the emergency server is not interacting with
customers, he/she could be performing other tasks such as organizing files, returning messages,
or answering the phone. Through our sensitivity analysis, we also determined that, when an
emergency server was present, wait times fluctuated only slightly given different arrival and
service rates, as the emergency server would always be ready to provide services to customers
once the queue increased in length.

In the future, we could apply our computational method to larger scale banks with more
servers and more customers. This would make our model more applicable to practical
situations. It would be interesting to consider different probability distributions of customer
arrivals depending on the time of day, as customers are generally more inclined to arrive at the
bank at certain times of day, such as rush hour. We could also look at the economic impacts of
adding extra servers on the management. Additionally, if we had time, we could attempt to
construct a computational method with continuous intervals between arrivals and continuous
service lengths, using integration and probability density functions to model the situation with
greater accuracy.
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Appendix A: Derivation of our Theoretical Model
For the purposes of this derivation, we define the following:

B &~

t, is the time in minutes between the arrival of the (n-1)th customer and the nth
customer.

sn is the time in minutes it takes for the nth customer to be served.

Wy is the difference in minutes between the nth customer’s arrival time and the time
when he/she begins getting served, equivalent to the nth customer’s waiting time.
Probability mass functions T and S represent the probability tables 1 and 2, such that,
for example, T(1) = P(t, = 1) = 0.15.

In general, lowercase symbols such as t, s, w, and u refer to individual random variates
(particular outcomes of a random process), whereas uppercase symbols such as W and
U represent PMFs that give the probability distribution of all possible values for their
corresponding lowercase symbol.

jmax IS the maximum time in minutes between the end of the nth customer’s service and
the arrival of the (n+1)th customer.

max{a, b} is defined as the largest value in the set {a, b}, whereas max{a} is defined as
the maximum possible value the random variate a can hold.

We derived a discrete-time equivalent of Lindley’s integral equation as follows. We

decomposed the problem into a series of recurrence relations, with the waiting time of each

customer depending on the waiting time of the previous customer.

The waiting period of the nth customer begins as soon as they enter the queue, which is

defined as t, minutes after the previous customer enters the queue. This waiting period ends as

soon as the previous customer is done being served, which happens s,.; minutes after that

customer leaves the queue. Thus, in general, the nth customer’s waiting time (w,) is given by

the waiting time of the customer directly preceding him or her (w,.1) plus the time it takes for

the previous customer to be served (s,.1)) minus the interval between the nth customer’s arrival

and the previous customer’s arrival (t,). This relationship is illustrated in Figure 2.
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Figure 2: A diagram illustrating the derivation for the value of w, given w4, Sn.1, and t,.
However, because the waiting time can never be negative, our formula can be revised to:
wy = maX{Wn—l + Sp—1 — ty, 0} = (Wn—l +Sp_1 — tn)+

For the purposes of simplification, let us define the sequence u,, ... ,u;5, such that for every
2 <n <150, u, is the difference between the (n - 1)th customer’s service time and the nth
customer’s arrival time interval:

Up = Sp—1 — ty
Substituting this into our prior equation gives:
Wy, = (Wp_q + un)+ [Eqn. 1]

which demonstrates that if w, is not zero, then u, represents the difference between the nth
customer’s waiting time and the (n-1)th customer’s waiting time.

We then define the corresponding probability mass function U such that
U(x) = P(u, = x) foranyn

Note that U is independent of n, as the distribution of service time and time between arrivals
does not depend on the identity of the customer. In fact, as the PMFs of both T and S are given
in Tables 1 and 2, it is possible to compute U directly. By inspection, U(x) yields O for all values
outside [-4, 4], as the difference between service and arrival times is at least -4 (corresponding
to s, =1and t, =5) and at most 4 (corresponding to s,.1 = 5, t,= 1).

Then for each x within the interval, we can directly evaluate U(x) as the sum of all possible
combinations of service and arrival times whose difference is x. For example,
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UR)=P(s.1=4"t,=2)P+P(sp-1 =3"t,=1)+P(s,-1 =2"t, =0)
= (.10)(.15) + (:15)(.40) + (.10)(.20)=.095

Manually extending this process from t = -4 to t = 4 and taking into account the fact that P(x) =0
forall x & [—4,4] vyields the following table:

X U(x)
.6, -5 0

-4 0.0125
-3 0.0725
-2 0.1575
-1 0.2025
0 0.235
1 0.1475
2 0.095
3 0.0625
4 0.015
5,6, .. 0

Table 4: Values of U(x) determined from provided Tables 1 and 2.

With this distribution, we can now create a recurrence relation defining the probability
distribution of waiting times W, in terms of W,,.; by extending our previous equation w, = (W1
+ u,)M+ [Egn. 1] into distributional space.

If we let y take the value of each possible wait time for the nth customer, we can divide the
possible values of this distribution into two cases:y >0 andy =0.

We can derive W,(y) for all y>0 by summing the probabilities of each possible combination of
W1 and u;, such that wy 1 + u, = y. Each of these probabilities is given by:

PWpy =i up=y—0 =W, (DU — 1)

for some integer i between 0 and max{w,.}, the maximum length of time that the previous
customer could have waited. This value can be found by finding the maximum time x such that
W,_1(x) # 0.Summing these values gives

max{wy_1}

W)= ) W, DU —0)ify>0 [Eqn2a)
i=0

Note that y-i may take values outside [-4, 4] because max{w,_1} may be greater than 4. Because
U(x) yields O for all values outside this range, however, these terms of the sum do not affect the
final result.
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If y=0, however, we need to take into account the fact that waiting times cannot be less than
zero. Thus, if wn.1 + U, is negative, w, must still be equal to zero because w, = max{w,1 + u,, 0}.
In other words, the probabilities P(w,.1 + u, = 0), P(Wp1 + U, = -1), P(Wp1 + Uy = -2), ... - need to
be summed to calculate W,,(0). Thus our expression becomes:

max{wy_1} Jmax
Wa@) = > W,y ) U(=i—j)|ify =0 [Eqn.2b]
i=0 =0

For simplicity, we chose to let jnax = 4, the minimum number required to cover all possible U
values in all cases.

Combining these two equations yields our final equation:

o max{wn_1)
Z W,_ Uy -1 ify >0
i=0
Wn(y) = 3 max{wn_ll} Jmax [Eqn' 2]
> (WY ui=p )ity =0
=0

\ =0 j



Appendix B

Table 5: Theoretical and experimental values of W (x) for values of x from 0 to 5

X

O N OO U SA WN -, O

NN NNNNNRRRRRRRR R R
OB WN R O WOKOKNOOO UIIS®A WN R O

W (X ) theoretical
0.250835307

0.098455397
0.094179782
0.087637054
0.072659258
0.061006037
0.052221589
0.044280849
0.037492559
0.031765768
0.026885639
0.022731497
0.019204206
0.016209968
0.013669888
0.011517118
0.009694141
0.008151753
0.006847942
0.005746819

0.00481775
0.004034607
0.003375122
0.002820332
0.002354099
0.001962701
0.001634481

W (x ) experimental

0.249608994
0.098389626
0.093728065
0.087623596
0.072983742
0.061038971
0.052988052
0.044584274
0.037916183
0.031980515
0.026967049
0.022891045
0.019203186
0.016200066
0.013542175
0.011408806
0.009776115
0.008030891
0.006660461
0.005592346
0.004709244
0.003953934
0.003400803
0.002817154

0.00228405
0.002033234
0.001657486

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
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0.001359544
0.0011295
0.000937239
0.000776743
0.000642923
0.000531481
0.000438788
0.000361787
0.000297904
0.000244971
0.000201169
0.000164972
0.000135099
0.00011048
9.02185E-05
7.35667E-05
5.9901E-05
4.87021E-05
3.95381E-05
3.20504E-05
2.59414E-05
2.09647E-05
1.69167E-05
1.36291E-05

0.001452446
0.001192093
0.00094986
0.000816345
0.000728607
0.000588417
0.000453949
0.000370026
0.000278473
0.00023365
0.000182152
0.000150681
0.000119209
9.63211E-05
9.15527E-05
6.10352E-05
6.96182E-05
4.86374E-05
4.3869E-05
3.62396E-05
1.81198E-05
2.09808E-05
1.33514E-05
6.67572E-06
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Comparison of wait time distributions for
different service systems
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Figure 3: A comparison of the experimental wait time distribution for three different service systems: a
single full-time server, two full-time servers, and an emergency server with a full-time server. The setup
with two full-time servers clearly minimizes the amount of time customers have to wait in line, but its
lower efficiency compared to the emergency server setup makes it a worse strategy for management to
adopt.
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Appendix C

Below is the complete python script used to simulate the proceedings of the bank.

# -*- coding: utf-8 -*-

from random import choice

import numpy as np

import collections

import csv

import os

from i1tertools import i1zip_longest

(nservers, nemergency, eenterqsize, etranstime, eexitgsize) =
(1,0,0,0,0)

def runday():

arrivals= [0]*10 + [1]*15 + [2]*10 + [3]*35 + [4]*25 +
[5]1*05

services= [1]*25 + [2]*20 + [3]*40 + [4]*15

customerdata= [(0O,choice(services))] + [(choice(arrivals),
choice(services)) for 1 iIn range(149)]

arrivaltimes= [0] + np.cumsum([c[0] for c in customerdata])

customers = collections.deque([(c[O],c[1].,arrivaltimes[i])
for 1, c in enumerate(customerdata)])

waiting=collections.deque()

servers=[(False,0,False)]*nservers
emergency=nemergency

emergencyTransitionTime=etranstime
emergencyEnterQueueSize=eenterqgsize
emergencyExitQueueSize=eexitgsize

time=0

datawaits=[]
dataQueuelLen=[]
dataTimeEmergency=[]
dataEmergencyAdded=[]
dataServerldle=[]
while True:
while len(customers)>0 and customers[O][2]<=time:
waiting.append(customers.popleft())
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servers=[(active, lasts-1,isE) for active,lasts,isE in
servers]

servers=[(active,s,isE) 1f s!=0 else (False,0,i1sSE) for
active,s,iIsSE in servers]

curDataTimeEmercency=0
curDataServerldle=0
curDataEmergencyAdded=0

toRemove=[]
for 1,zz In enumerate(servers):
(active, s, isEmergency) = zz
ifT 1IsEmergency:
curDataTimeEmercency+=1
if not active:
it 1SsEmergency and
len(waiting)<=emergencyExitQueueSize:
toRemove+=[i]
continue
1T len(waiting)>0:
(a,nexts,entrytime)=waiting.popleft()
dataWaits+= [time-entrytime]
servers[1]=(True, nexts, isEmergency)
else:
curDataServerldle+=1
for 1 In reversed(toRemove):
emergency+=1
del servers|i]
if emergency>0 and
len(wairting)>=emergencyEnterQueueSize:
emergency-=1
curDataEmergencyAdded+=1
servers.append((True,emergencyTransitionTime,True))

dataQueuelLen+= [len(waiting)]

dataTimeEmergency+= [curDataTimeEmercency]

dataEmergencyAdded+=[curDataEmergencyAdded]

dataServerldle+= [curDataServerldle]

#print([len(customers), len(waiting),servers])

if len(waiting)==0 and len(customers)==0 and all([not
active for active,t,isE iIn servers]):

break
time+=1
return ((datawaits), mean(dataQueuelLen),
sum(dataServerldle), sum(dataEmergencyAdded),

sum(dataTimeEmergency),time)
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datas=[];
for n In range(10000):
#print(n)
1T mod(n,1000) == O:
print(n/1000)
datas+=[runday()]

# datas now contains all data from these trials.
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Appendix D: Sensitivity Analysis for Data and Fluctuations

In order to test how sensitive our model is to changes in data, we changed the probabilities
given to us by small and large amounts. The following tables show the results of either slight or
great changes to either the times of arrivals or service times.

Greatly increased arrival rate:

Time between arrival (min.) 0 1 2 3 4 5

Probability 0.17 0.33 0.29 0.10 0.06 0.05
Mean customer Mean queue length | Emergency Server Server idle time
wait time (min.) (customers) Work Time (min.) (min.)

Single server: | 57.05992 11.40478 n/a 2.11110

Single + | 2.67963 1.56315 141.31050 16.41240

emergency:

Greatly decreased arrival rate:

Time between arrival (min.) 0 1 2 3 4 5

Probability 0.04 0.04 0.09 0.14 0.42 0.27
Mean customer Mean queue length | Emergency Server Server idle time
wait time (min.) (customers) Work Time (min.) (min.)

Single server: | 0.47679 0.13087 n/a 183.55140

Single + .0.44185 0.12114 1.76800 184.76850

emergency:

Slightly increased arrival rate:

Time between arrival (min.) 0 1 2 3 4 5
Probability 0.11 0.16 0.11 0.36 0.26 0



Mean customer
wait time (min.)

Single server: | 8.24167
Single + 1 1.61710
emergency:

Slightly decreased arrival rate:
Time between arrival (min.)

Probability

Mean customer
wait time (min.)

Single server: | 3.13214
Single +  1.31758
emergency:

Greatly increased service rate:

Service Time (min.)
Probability

Mean customer
wait time (min.)

Single server: | 2.36801
Single + | 1.13919
emergency:

Greatly decreased service rate:

Service Time (min.)
Probability

Mean customer
wait time (min.)

Single server: | 36.26800
Single + | 2.43217
emergency:

Slightly increased service rate:

Mean queue length
(customers)
3.20595

0.64559

0.09

Mean queue length
(customers)
1.12310

0.47106

0.28

Mean queue length

(customers)
0.89845
0.43058

0.28

Mean queue length

(customers)
11.56639
0.91092
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Emergency Server

Server idle time

Work Time (min.) (min.)
n/a 20.56580
48.28230 87.72130
1 2 3 4
0.14 0.09 0.34 0.24

Emergency Server

Work Time (min.)
n/a
29.31460
2 3
0.43 0.10

Emergency Server

Work Time (min.)
n/a
25.19650
2 3
0.43 0.10

Emergency Server
Work Time (min.)
n/a

102.77920

Server idle time

(min.)
56.78220
76.39490
4
0.19

Server idle time

(min.)
70.89160
87.72130
4
0.19

Server idle time
(min.)

2.97420
21.63090

0.10



Control Number 4100 | Page 25 of 25

Service Time (min.) 1 2 3 4

Probability 0.28 0.43 0.10 0.19
Mean customer Mean queue length | Emergency Server | Server idle time
wait time (min.) (customers) Work Time (min.) (min.)

Single server: | 3.99738 1.50759 n/a 44.77870

Single + | 1.38542 0.52295 34.94580 67.43670

emergency:

Slightly decreased service rate:

Service Time (min.) 1 2 3 4

Probability 0.28 0.43 0.10 0.19
Mean customer Mean queue length | Emergency Server Server idle time
wait time (min.) (customers) Work Time (min.) (min.)

Single server: | 5.99814 2.23645 n/a 29.99890

Single + 1.55318 0.58562 42.60380 56.26230

emergency:



<0
O<L

Control Number: 4100
. . 14 Maniidon Dr.
Consulting & Analysis Middletown, CA 17163
Phone:(555) 555-3141
Fax:(555) 555-5926

November 17, 2013

Mr. Kevin Banks
3141 Banker Ave.
Middletown, CA 17109

Dear Mr. Kevin Banks,

We have completed the statistical analysis you requested on the current service system
implemented by your bank. Our results show that the present setup already meets the desired
upper limit on the average number of customers waiting to be served at any given time by
keeping the size of the line to an average of 1.8 customers, slightly less than the desired average
of 2. However, in regardsto the average time a customer must wait before being served, the
current bank service system proves unsatisfactory. The desired average wait time is 2 minutes or
less, but the actual average wait timeis around 4.9 minutes. In order to improve on your current
system, we tested two possible solutions. The first involves hiring another new full-time
dedicated teller (bringing the total number of tellersto two), while the second involves keeping
the current full-time teller and adding an “emergency” teller to provide services to customers
when three or more people are waiting in line. Both options will bring the desired average
customer waiting time down to the target value, but if the second solution can be implemented, it
will a'so maintain alow idle time for workers and higher worker productivity.

Using two tellersinstead of one would greatly improve customer satisfaction. Our simulations
indicate that hiring another teller would reduce the average customer wait time to about 6
seconds and the average number of waiting customers to 0.04, both of which are significant
improvements to the current system and will meet the outlined goals. However, with this system,
each worker would be idle a staggering 54% of the time. While this method would be successful
in greatly improving customer satisfaction, it may be undesirable due to the immense decrease in
worker efficiency.

A more efficient method would be to add a secondary teller only when too many people are
waiting in line. We suggest that you designate an “emergency” teller and, when there are 3 or
more people waiting, instruct them to set aside their current work and begin serving customers.
Oncetheline of customersis empty, this employee can leave once again to fulfill other
obligations. Our results show that, assuming it takes the employee 2 minutes to transition
between these two tasks, this method reduces the average customer wait time to only 1.5 minutes
and the average line length to 0.6 customers, both well within the desired ranges. Additionally,
the total timetellerswill spend idlein a given day would only be 60 minutes on average,
considerably less than the total idle time when using two full-time tellers. This system would not
only improve customer service quality but also minimize the amount of wasted time by idle
tellers. Furthermore, we determined that this method has the capability to deal with unpredicted
increases in arrivals and service times without greatly increasing customer waiting times or
gueue size.

www.dvmd-consulting.com
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[D W . . 14 Maniidon Dr.
M [[) Consulting & Analysis Middletown, CA 17163

Phone:(555) 555-3141
Fax:(555) 555-5926

After testing both methods, our final recommendation is to add an emergency teller to your
current system. Thiswill maximize the efficiency of your business as well as increase service
flow. Thank you for choosing DVMD to provide an accurate statistical analysis of your situation.
If you need further assistance in implementing this new system or would like us to provide a
more detailed analysis of your current system, we would be happy to assist at the previously
agreed-upon rates. We hope that after applying this new bank service system, you will see your
desired improvements in overall customer satisfaction.

Sincerely,

David Davis
DVMD Consulting

www.dvmd-consulting.com
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