
DUKE MATH MEET 2008: POWER ROUND: JAPANESE THEOREMS ON CYCLIC
POLYGONS

In the Power Round the entire team of six students will have 60 minutes to answer this series of proof-
based questions. The team members may collaborate freely, but like all rounds in the Duke Math Meet
only pencil and paper can be used. After 60 minutes the team will submit all solutions. Solutions to
different questions must be on different sheets of paper. Cross out anything you do not want graded.
Teams will be given 30-minute, 5-minute, and 1-minute warnings. Teams may use results of previous
problems to solve later problems, even if the team has not submitted solutions to those
previous problems. The number of points earned for each problem varies, but the total is 16 points.
This power round is divided into three somewhat independent parts.

1. Basics (5 Points Total)

We will call a polygon “cyclic” if there is a single circle that passes through all of its vertices. (WARN-
ING: Some people use the word “concyclic.”) All triangles are cyclic, though not all quadrilaterals are. In
the second and third sections you will prove two advanced theorems about cyclic quadrilaterals and cyclic
polygons. In this section, though, you will prove two basic theorems that will be helpful in some of the
later sections.
1A. (1 Point.) Prove the following statement:

A, B, and C are on a circle whose center is O, as in the diagram below. If B and O are on the same

side of
←→
AC (or if one of these two points is on

←→
AC), then m∠AOC = 2 · (m∠ABC).

(Hint: Draw OB.)

1B. (1 Point.) Prove the following statement:

A, B, and C are on a circle whose center is O. If B and O are on opposite sides of
←→
AC (or if one of

these two points is on
←→
AC), then m∠AOC = 360◦ − 2 · (m∠ABC).

(Hint: Draw OB.)

The following are perhaps the two most useful basic results about cyclic quadrilaterals:

(i) (Equal Angles Theorem) The quadrilateral ABCD is cyclic if and only if m∠CAD = m∠CBD,
as in the diagram below. (You can use a different ordering of the points and get, for example, that
ABCD is cyclic if and only if m∠ABD = m∠ACD.)
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(ii) (Supplementary Angles Theorem) The quadrilateral ABCD is cyclic if and only if

(m∠ABC) + (m∠ADC) = 180◦.

(Of course, you can use a different ordering of the points and get, for example, that ABCD is
cyclic if and only if (m∠BAD) + (m∠BCD) = 180◦.)

You will prove these results in 1C, 1D, and 1E.

1C. (0.5 Points for Each Statement = 1 Point Total.) Prove that if the quadrilateral ABCD is cyclic, then
m∠CAD = m∠CBD and (m∠ABC) + (m∠ADC) = 180◦. (Hint: Use 1A and 1B.)

1D. (1 Point.) Prove that if in the quadrilateral ABCD we have that m∠CAD = m∠CBD, then ABCD
is cyclic.

(Hint: Here is an outline of one way to prove this. If we can show that A is on the circle that passes
through B, C, and D, then we will be done. Draw the circle that passes through B, C, and D. Let E be

the point other than D where
←→
AD and the circle intersect. If we can show that E = A, then we will be

done. In order to show this, draw CE and then use the result from 1C to prove that m∠CED = m∠CAD.
Why does this show that A = E?)

1E. (1 Point.) Prove that if in the quadrilateral ABCD we have that (m∠ABC) + (m∠ADC) = 180◦,
then ABCD is cyclic.

(Hint: A proof similar to the one for 1D works here.)

2. The Japanese Theorem on Concyclic Quadrilaterals and
The Japanese Theorem on Cyclic Polygons (6 Points Total)

The Japanese Theorem on Cyclic Quadrilaterals says the following: (See the diagram below.)
Let ABCD be a cyclic quadrilateral, and let I, J , K, and L be the centers of the circles inscribed within
∆ABC, ∆BCD, ∆ACD, and ∆ABD, respectively. Then IJKL is a rectangle.

2A. (0.5 Points Each = 2 Points Total.) Perform the details in each of the starred steps below to turn the
outline into a complete proof of the Japanese Theorem on Cyclic Quadrilaterals. You do NOT need to do
any of the unstarred steps! Of course, you are free to use their results in later steps.
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(i) (*) State and prove a simple algebraic relation between m∠CAD and m∠CKD and prove that it
is correct. (Hint: Focus on ∆ACD, and draw in AK, CK, and DK.)

(ii) (*) State, but do not prove, a similar algebraic relation between m∠CBD and m∠CJD. Then
use this relation and the one from (i), plus the Equal Angles Theorem to prove that CJKD is
cyclic.

(iii) Repeat steps (i) and (ii) to show that DKLA is cyclic.
(iv) (*) State and prove a simple algebraic relation between m∠JKD and m∠BCD and prove that it

is correct. (Hint: First use the Supplementary Angles Theorem. Then focus on ∆BCD.)
(v) (*) State, but do not prove, a similar algebraic relation between m∠LKD and m∠BAD. Then

use this relation and the one from (iv), plus the Supplementary Angles Theorem to show that

(m∠LKD) + (m∠JKD) = 270◦.

(vi) The previous step shows that ∠JKL is right.
(vii) Repeat steps (i) to (vi) three more times to show that ∠IJK, ∠KLI, and ∠LIJ are right and

therefore IJKL is a rectangle.

A triangulation of a polygon is a way of breaking a polygon and its interior into non-overlapping
triangles such that every vertex of every triangle is a vertex of the original polygon. The diagram below
gives two different triangulations of the same polygon.

The Japanese Theorem on Cyclic Polygons says the following: (See the diagram below.) For any
cyclic polygon P, the sum of the radii of the inscribed circles in any triangulation of P does not depend on
the specific triangulation chosen. So, for example, the sum of the radii of the circles in the diagram below
and to the left equals the sum of the radii of the circles in the diagram below and to the right.

We will prove this theorem using induction on the number of sides of P.
2B. (2 Points.) In the diagram on the previous page, let `1 and `3 be the lines that are parallel to AC
and pass through I and K. Let `2 and `4 be the lines that are parallel to BD and pass through J and L.
Prove that the four lines `1, `2, `3, and `4 form a rhombus.

2C. (1 Point.) Explain why the result in 2B proves the Japanese Theorem on Cyclic Polygons in the case
when P has four sides.

2D. (1 Point.) Now assume that for some integer n ≥ 4, the result of The Japanese Theorem on Cyclic
Polygons is true if P has n sides. Prove that the result of The Japanese Theorem on Cyclic Polygons is
true if P has n + 1 sides. With this step the induction, and therefore the proof of The Japanese Theorem
on Cyclic Quadrilaterals, is complete.

(Hint: The result of 2C is helpful.)
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3. Carnot’s Theorem and The Japanese Theorem on Cyclic Polygons (5 Points Total)

Carnot’s Theorem states the following: (Refer to the diagram below.) Let ABC be a triangle, let O
be the center of its circumscribed circle and R its radius, and let I be the center of its inscribed circle and r

be its radius. Let D, E, and F be the feet of the perpendiculars from O to
←→
AB,

←→
AC, and

←→
BC, respectively.

Then: ∥∥OD
∥∥ +

∥∥OE
∥∥ +

∥∥OF
∥∥ = R + r,

where for X ∈ {D,E, F},
∥∥OX

∥∥ means;

(i) the length of OX if the interior of OX intersects the interior of ∆ABC and
(ii) the negative of the length of OX if the interior of OX does not intersect the interior of ∆ABC.

In the diagram below,
∥∥OE

∥∥ is negative and both
∥∥OD

∥∥ and
∥∥OF

∥∥ are positive.

3A. (2 Points.) Prove Carnot’s theorem in the case when O is outside or on the boundary of ∆ABC.
(Hint: Draw the altitudes of ∆ABC.)

3B. (1 Point.) Prove Carnot’s theorem in the case when O is inside or on the boundary of ∆ABC. (You
will have proved Carnot’s theorem twice when O is on the boundary of ∆ABC; this is intentional and may
be helpful later.)

(Hint: The proof will be similar to the one in 3A.)

3C. (1 Point.) Let P be the cyclic polygon P1P2 · · ·Pn. Let O be the center of the circle that passes
through all of the vertices of P and let R be the radius of the circle. For each i between 1 and n, let Qi be

the foot of the perpendicular from O to
←→

PiPi+1, where Pn+1 means “P1.” Prove that the sum of the radii
of the inscribed circles in any triangulation is exactly equal to:∥∥OQ1

∥∥ +
∥∥OQ2

∥∥ + · · ·+
∥∥OQn

∥∥−R(n− 2),

where for each i between 1 and n, ‖OQi‖ means:
(i) the length of OQi if the interior of OQi intersects the interior of P and
(ii) the negative of the length of OQi if the interior of OQi does not intersect the interior of P.

(There was originally a typo in this section of the power round. The relevant expression was written as:∥∥OQ1

∥∥ +
∥∥OQ2

∥∥ + · · ·+
∥∥OQn

∥∥ + R(n− 2).

All teams who pointed out that there was a typo received full credit, as did all teams who proved the
corrected version.)

3D. (1 Point.) Use the result of 3C to give a second proof of the Japanese Theorem on Cyclic Polygons.
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