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Statistical Mechanics

Thermal physics deals with collections of large numbers of particles, in the range of 1023 or
so. Every element in Nature that we can appreciably observe with our eyes, has already enough
particles in it to qualify as subject for thermal physics. Many properties of the bulk matter (e.g.
temperature, mean pressure, volume etc..) do not depend on the microscopic details of atomic
physics and their study constitute the subject of thermodynamics. However, it is clear that
do ensure a complete description of nature we need a combined study of also the microscopic
properties of the constituents of a system.

We actually have no problem formulating their governing equations.Indeed the motions of
atoms and molecules are described exactly by the laws of quantum mechanics. So, in principle,
we could write down the exact laws of motion for a thermodynamic system and solve for the
Schrodinger equation of the wave function representing the entire system. Good luck with
that! The problem indeed is that in one mole of a substance there are in the order ofNA = 6∗1023

particles or molecules. This is a huge number and to solve the system exactly, we would need
about 1023 coupled equations with as many initial conditions. Quite a painful and useless task.

Indeed we are not at all interested in knowing the position and velocity of every particle in
the system as a function of time. What we are interested in are quantities like the volume of the
system, its pressure, heat capacity, etc. We can then notice that the amount of information we
are interested in is actually absolutely minuscule compare to the number of degrees of freedom
of the system. Thus a statistical approach is more than justified. As a matter of fact, those
macroscopic quantities we are trying to quantify do not depend on the single motion of particles
but on the average motions of all the particles in the system.

The goal here is to develop the basic principles of statistical mechanics starting from
some fundamental assumptions and building up from them. As a first step we will refresh some
elementary statistical concepts which will be crucial in order to fully understand the topics we
will discuss later.



1 Probability Theory and Statistics

1.1 Basic probability facts

When discussing probabilities it is always necessary to consider an “ensemble” consisting of
a very large number ζ of similarly prepared systems. For instance, by considering in throwing
a die, one can give a statistical description by considering a very large number ζ of similar dice
thrown under the same circumstances (in principle ζ → ∞). The probability of the outcome A
is then defined as the ratio of the number of systems in the ensemble which exhibit this outcome
to the total number of systems,We can write this symbolically as:

P (A) =
Ω(A)

Ω(ζ)
(1)

The set of all possible outcomes is called the universal set Ω.1 Every event A is a subset of Ω.
Generally a Probability P is an assignment of numbers to each event A ⊂ Ω which satisfies

the following properties:

• P (Ω)=1

• P (A) ≥ 0 ∀A ⊂ Ω

• if A ∩B = ∅, then P (A ∪B) = P (A) + P (B)

If the outcome of an event B does not effect the probability of event A to occur, we say that A
and B are independent. Indeed, this means that the realization of event B does not provide any
information nor effect the outcome of event A. In this scenario, it becomes therefore clear that
the probability that both event occur can be simply viewed as the product of the probabilities
of the single events. In short when A and B are independent:

P (A ∩B) = P (A)P (B) (2)

P (A ∪B) = P (A) + P (B)− P (A)P (B) (3)

A Random variable X is an assignment of numbers to each element of the outcome space,
that is a random variable is a function, X : Ω→ <. The most common description of a random
variable is given by the notion of probability distribution which is a function p: < →[0,1] such
that

∑
x p(x) = 1 for x ∈ X. In short, a probability distribution is simply a function that

provides the probabilities of occurrence of all possible outcomes in the outcome space Ω.
1here I used the standard notation but in relation to the notation used in eq.22, the universal set is defined as

Ω = limζ→∞ Ω(ζ)



1.2 Combinatorics

Looking at eq.22 immediately gives us a very important insight about computation of prob-
abilities: we need to have a good method to count systems. Here I will list some basic facts
about combinatorial analysis which is the branch of mathematics that studies the number of
different ways of arranging things. Make sure you have a good understanding of these concepts
before moving on to the next section. In fact, they will constitute a crucial skill for the study
of statistical mechanics, where the first step in the resolution of every problem is to count the
number of states of a certain system.

Let’s consider a system A made of n distinct elements. An ordered arrangement of these n
items is a permutation and the total number of permutations of such elements Pn is defined
as:

Pn = n! (4)

Now if I only look at p items among the n elements for p ≤ n, the total number of arrangements
is denoted as Pn

p and is equal to

Pn
p =

n!

(n− p)!
(5)

Notice that for p = n, Pn
p = Pn as we would expect.

So far we have only considered a system made of n distinct elements. However generally this is
not always the case. I might have, for instance, systems which contain classes of indistinguishable
elements. In this scenario, if I have a system of n elements composed of k distinct classes of ak

indistinguishable objects. The number of permutations Pnak is equal to:

Pnak =
n!∏k

k=1 ak!
(6)

Coming back to the system A of n distinct elements, we realize that by computing permuta-
tions we are inherently assuming that every time an element comes out, we can only pick elements
from the n− 1 left. If instead, we allow repetitions, the number of ordered arrangements is:

Dn
p = np (7)

where p is defined as the number of times we can pick an element from a system containing n
objects. In other words, we can view Dn

p as the number of possible arrangements of one event
with n outcomes repeated p times.

That said, often we are not interested in the order of the elements but we want to determine
the total number of different groups (sets) of p objects that could be formed from a total of n
objects. An unordered collection of p items among the n elements is a combination and the
total number of combinations Cn

p is defined as:

Cn
p =

(
n

p

)
=

n!

p!(n− p)!
(8)



1.2.1 Exercise 1

In five card draw poker, a royal flush consists of the five highest ranking cards (ace, king,
queen, jack, ten) in any one suit. On the first deal from a deck of 52, what is the probability of
getting a royal flush?

Hint : what are the number of ways that a royal flush can occur compared to the total number
of possible arrangements of 5 cards out of a deck of 52?

1.2.2 Exercise 2

Prove that ∀x, y ∈ < and n ∈ N

(x+ y)n =
n∑
k=0

(
n

p

)
xkyn−k (9)

Hint : This is the Binomial theorem, a good way to prove it is by induction which means:
prove the relation holds for n = 1 element, then assume it’s true for n elements and prove that
the relation still holds for n+1.

1.3 Mean values, Dispersion and Probability distributions

What is meant by the mean or avarage of a quantity? Well, to better understand its meaning
let’s start with an example. Suppose we want to compute the average height of the people in
our class. In this scenario we would write something like:

Average height = h̄ =
Nh1h1 +Nh3h2 +Nh3h3 + ...

Nh1 +Nh2 +Nh3 + ...
, (10)

Where Nhi
is the number of students with height h1. Now, as it follows from our discussion

above, the probability to pick randomly a student with height hi is simply P (hi) =
Nhi
Ntot

. We can
therefore rewrite eq.10 in the form

h̄ = P (h1)h1 + P (h2)h(2) + P(h3)h3 + ... =
N∑

i=1

P(hi)hi (11)

where N is the total number of different heights.
This is a general result of probability theory. So, for a general variable x which can take on

any one of N possible values xi with corresponding probability Pxi , the mean value x, denoted
as x̄ is defined as:

x =

N∑
i=1

P (xi)xi (12)

Suppose that f(x) is some function of x. Then, for each of the N possible values of x, there is
a corresponding value of f(x) which occurs with the same. It follows from our previous definition
that the mean value of f(x) is given by:

f(x) =

N∑
i=1

P (xi)f(xi) (13)



Another important concept in probability theory is the dispersion of x which gives us a way to
characterize the scatter around the mean value of the variable. The dispersion is defined as:

(∆x)2 =
N∑
i=1

P (xi)(xi − x)2 (14)

Its value is clearly a positive number and it is equal to zero only if xi = x ∀xi. The larger
the spread of the values xi around the mean, the larger the dispersion. This quantity thus
measures the amount of scatter of values of the variable about its mean value. In other words,
the dispersion essentially represents the width of the range over which x is distributed around
its mean value x.

Thus far we have implicitly been focusing on discrete state spaces and discrete random
variables. That is, we have implicitly assumed that Ω is a finite set. However, the rules of
probability we have just discussed are still valid for non finite sets, we simply need to be more
careful when calculating mean values. In particular we need to substitute the summations with an
integral, and redefine the probability of x such that P (x) = ρ(x)dx where ρ(x) is the probability
density of the random variable X. Then it follows:

x =

∫ +∞

−∞
ρ(x)xdx f(x) =

∫ +∞

−∞
ρ(x)f(x)dx (15)

(∆x)2 =

∫ +∞

−∞
ρ(x)(x− x)2dx (16)

Here I list some of the most known probability distributions which you might need during
the course of this exam:

Binomial Distribution := P (n) =
N !

n!(N − n)!
pn(1− p)N−n (17)

Poisson Distribution := P (n) =
λn

n!
e−λ (18)

Gaussian Distribution := P (u) =
1√

2πσ2
e−

(u−u)2

2σ2 (19)

Eq.17 describes the probability of an event, characterized with probability p, to occur n times in
N trials. Eq.18 describes the probability of observing n events in a interval interval where λ is
the average number of events per interval. Eq.19 is very useful to describe physical events when
the number of events is very large. The Gaussian distribution is a continuous function which
approximates the exact binomial distribution.

When dealing with large numbers, the calculation of n! becomes very laborious, you may
find useful to remember the result of Stirling’s formula which is a very good approximation
for n≫ 1:

lnn! ≈ n(lnn− 1) ln (1− n) ≈ −n (20)



1.3.1 Exercise

Prove that for N ≫ n the Binomial distribution in eq.17 approximates to the Poisson
distribution in eq.18.

Hint : While you can take n
N ≪ 1 or n2

N ≪ 1 you cannot assume n≪ 1.

1.3.2 Exercise

A drunk guy starts out from a lamppost located on a street. Each time he takes a step, the
probability of its begin to the right is p = 1

2 and is equal to the probability of its being to the
left is q = 1− p = 1

2 .
What is the probability that the man will be again at the lamppost after taking N steps

a) if N is even?

b) if N is odd?

1.3.3 Exercise

Consider the random walk problem in one dimension, the probability of a displacement
between s and s+ ds is given by the Gaussian distribution:

w(s)ds =
1√

2πσ2
e−

(s−l)2

2σ2 (21)

After N steps,

a) What is the mean displacement x from the origin?

b) What is the dispersion (∆x)2?

Hint : In this case x = Ns and (∆x)2 = N(∆s)2. However this is not a general result thus,
to get full credit, you will need to prove the above statements.



2 Counting States

As we have seen in the multiple examples proposed in section 1, when computing probabilities
it is always important to count the number of states of a system. Thus, the first step in solving
any problem in statistical mechanics will be indeed to elucidate and count the states of a system
in terms of its total energy E. To do so, we’ll work out several examples to get a sense of how
to approach generally these kinds of problems.

2.1 A Spin Chain

Let’s consider a chain of N spins immersed in a magnetic field in 1-D2 B = H ẑ. We will
consider N fixed throughout the all discussion. Now, each of the spin is characterized by two
states: it can either be spin up S↑ or spin down S↓ with equal probability P = 1

2 . The magnetic
moment ~µ of the particles with spin up is positive on the z direction, meanwhile the one for spin
down particles is negative. They both have the same magnitude |~µ| = a. Thus, since the energy
for 1 spin is given by E = −~µ ·B, we can write:

E↑ = −aH (22)

E↓ = aH (23)

Let’s define then N↑ to be the number of spin ups and N↓ to be the number of spin pointing
down. The total number of spins N is therefore simply given by N = N↑+N↓. The total energy,
according to equations 22 and 23 is given by:

E = E↑ + E↓ = (N↓ −N↑)aH (24)

2.1.1 Exercise

Given the Spin chain described above

a) Calculate the number of states at a given energy Ω(E).

Hint :In how many ways can the spins be distributed such that the total energy is E?

b) Compute ln Ω(E) for N ≫ 1.

Hint : You may find useful to use Stirling’s formula in its simplest form such that N ! =√
2NNe−N

c) Assume that the energy E is in a region where ω(E) is appreciable, that it is not close
to the extreme values ±NaH. In this case apply a Gaussian approximation to part a) to
obtain a simple expression for Ω(E) as a function of E.

Hint : The total number of states will be maximal when E = 0, you may expand part a)
around E = 0 recalling that ln (1+x)

2 ≈ ln 1
2 + x− x2

2 for x≪ 1
21-D stands for 1 dimension



2.2 The Einstein Model of a Solid

Now let’s move on to a system that’s a bit more complicated, but also more representative of
the systems typically encountered in physics. Consider a collection of microscopic systems that
can each store any number of energy “units”, all of the same size. Equal-size energy units are
found in any quantum mechanical harmonic oscillators where the size of the energy units is equal
to ~ω where ~ is the reduced Planck’s constant and w is the angular frequency of the oscillator.
We can model a solid as a collection of identical oscillators with quantized energy units. This
model was first proposed by Albert Einstein in 1907, so we will refer to the system as an Einstein
Solid.

Figure 1: Microstates of a small Einstein solid consisting of only three oscillators, containing a total of
zero,one,two or three units of energy

Let’s start with a very small Einstein solid, composed of only 3 oscillators. fig.1 lists the
various microstates that the system could have and the corresponding possible macrostates.
There is just one macrostate with total energy 0, while there are three microstates with one unit
of energy, six with two units and then with three units.

That is,
Ω(0) = 1, Ω(1) = 3, Ω(2) = 6, Ω(3) = 10 (25)

2.2.1 Exercise

Consider now an Einstein solid with N oscillators and q energy units.

a) find the general formula for the number of states. Be aware, you will not get full credit
without furnishing a somewhat rigorous proof for the formula you obtain.

b) Using Stirling approximation as defined in eq.20, your result in part a) and that q ≫ N

prove that Ω(E) ≈ ( eqN )N

2.3 A Monoatomic Ideal Gas (IMG) of n particles

Let’s consider an ideal gas in a volume V made up of spinless mono-atomic particles. This
is a particularly simple example, because for such a gas the particles possess translational but



no internal (e.g.,vibrational, rotational, or spin) degrees of freedom. By definition of an ideal
gas, inter-atomic forces thus the total energy of the gas is simply given by the total translational
kinetic energy of its constituent particles.

E =
1

2m

N∑
i=1

pi
2 (26)

where m is the particle mass, N the total number of particles, and pi the vector momentum of
the ith particle. This situation can be achieved physically in the limit where the concentration N

V

of the molecules is made sufficiently small, for the mean separation between molecules becomes
so large that their mutual interaction becomes negligibly small.

Now each particle of this system can be fully described in terms of its position coordinates
qi and its corresponding momentum pi. Let’s assume for now that the each particle only moves
in 1 dimension. In this case to describe the motion of each of them we can simply look at their
two-dimensional phase space. As the coordinate and momentum of the particle change in time,
the representative point (qi; pi moves through this phase space.

In order to describe the situation in terms of where the possible states of the particle are
countable, it is convenient to subdivide the ranges of the variables q and p into arbitrarily
small discrete intervals. For example, we will divide our phase space in small cells of equal size
δpδx = h0 such that only 1 state can be contained in the two-dimensional volume (area) h0. It
becomes clear than that to specify the number of possible states in such system we simply need
to take the ratio of the area occupied in phase space by the particle over h0.

The generalization of the above remarks to our ideal gas made of N particles in a volume V
is immediate. In such a system each of the N particles is characterized by 3 position coordinates
and 3N degrees of freedom. The volume occupied by 1 state is then simply equal to:

V 0
ps = δq1δp1δq2δp2...δq3Nδp3N = h0

3N (27)

The number of states Ω(E) lying between the energies E and E + δE is then equal to the ratio
between the total Volume in the 3N phase space occupied by the system and V 0

ps. In symbols:

Ω(E) =
1

h0
3N

∫ E+δE

E
d3q1...d

3qNd
3p1...d

3pN (28)

Now since we assumed there is no potential energy whatsoever, the energy E, given by eq.26 is
independent of the center of mass positions qi of the molecules. Hence eq.28 becomes:

Ω(E) =
V N

h0
3N

∫ E+δE

E
d3p1...d

3pN (29)

where V is simply the volume of the container.

2.3.1 Exercise

By computing the integral in eq.29 prove that

Ω(E) = BV NE
3N
2 (30)



where B is a constant of proportionality.
Also notice you can rewrite Ω(E) in the simple form:

Ω(E) =
V N

h0
3N
χ(E) (31)

where χ(E) =
∫ E+δE
E d3p1...d

3pN.
Hint : You may find useful to rewrite eq.26 in the form 2mE =

∑N
i=1

∑3
α=1 piα

2 and notice
that it describes a sphere in the 3N-dimensional space of the momentum components with ra-
dius R(E) = (2mE)

1
2 . Finally notice that to prove eq.30 you only need to find what Ω(E) is

proportional to.



3 Interaction between systems: Conditions for Equilibrium

In the discussion of the previous section we have considered only isolated systems, thus
systems that cannot exchange energy with its surroundings and are therefore characterized by
a constant energy E. We also implicitly made a very important assumption, known as the
fundamental postulate of thermodynamics. This postulate constitutes the base of our theory of
statistical mechanics and is therefore important to elucidate it clearly:

An isolated system in equilibrium is equally likely to be in any of its accessible states

That is,if phase space is subdivided into small cells of equal size, then an isolated in equilib-
rium is equally likely to be in any of its accessible states3

Let’s consider now a situation where it is known that an isolated system is not equally likely
to be found in any of the states accessible to it. Our fundamental postulate asserts that this
situation cannot be one where equilibrium prevails.

Generally speaking, suppose that the system at some initial time t is known to be in some
subset of the states actually accessible to it. There are no restrictions which would prevent the
system from being found in any of its accessible states at some later time since all the states
satisfy the conservation of energy. It is therefore extremely unlikely that the system remains
indefinitely in this restricted subset of states. Instead, the system will in the course of time
always make transitions between all its various accessible states as a result of small interactions
between its constituent particles.

The question stands up clearly: What will it happen to the system at some later time
t∗. To answer such a question we may simply consider a statistical ensemble of such systems.
The systems in the ensemble will constantly continue making transitions between the various
accessible states through practically all the states in which it can possibly be found. One expects
that the net effect o these constant transitions will be analogous to the effect of repeated shufflings
of a deck of cards. In this scenario, if one keeps on shuffling long enough, eventually the cards
get so mixed up that each one is equally likely to occupy any position in the deck, irrespective
of how the deck was arranged initially. Similarly, in the case of the ensemble of systems, one

expects that the systems ultimately will be uniformly distributed over all accessible states. In
other words, one expects that, no matter what the initial conditions are, an isolated system will
ultimately reach its final equilibrium situation where it is equally likely to be found in any of its
accessible states.

3doesn’t this remind you of the method we used in the previous section to calculate the number of states for
an IMG?



3.1 Thermal Interaction

A thermal interaction between two systems A and A′ is defined as interaction where these
two systems can exchange energy.

There are all sorts of mechanisms by which energy can be exchanged. However, in thermo-
dynamics, we usually classify these mechanisms under two categories: heat and work.

Heat is defined as any spontaneous flow of energy from one object to another caused by a
difference in temperature between the objects.4

Work is defined as any other transfer of energy into or taken out from the system. You do
work on a system whenever you push on a piston, run current through a resistor. In each case
we are increasing the total energy of the system through the help of some “agent” that is actively
pumping energy into the system.5

Now, coming back to our composite system of A and A′, let’s also assume that the combined
system A0 = A+A′ is isolated so that its total energy E0 = E +E′ is conserved. Suppose that
the systems A and A′ are in equilibrium with each other. Notice that since E0 is constant, given
energy E of the system A, we can view the energy of A′ simply as E′ = E0 − E. Hence the
number of accessible states for the entire system A0 can be regarded as a function of the single
parameter E, the energy of system A. Our fundamental postulate asserts that in equilibrium A0

is equally likely to be in any of its states. From this it follows that, under these circumstances,
the probability P (E) that the combined system A0 is in a configuration in which A has energy
between E and E + δE is simply proportional to the total number of states of A0:

Ω0(E) = Ω(E)Ω′(E0 − E) (32)

In symbols, P (E) is simply:

P (E) = CΩ0(E) =
Ω0(E)

Ω0
tot (33)

Let us now try to investigate the dependence of P (E) on the energy E. In view of eq.32, we notice
that P (E) is proportional to the product of the multiplicities of the single systems. Moreover, as
a function of increasing E, Ω(E) increases extremely rapidly while Ω′(E0−E) decreases extremely
rapidly.6 The result is that the product of the two, which as just mentioned is proportional to
P (E), exhibits a very sharp maximum for some particular value Ẽ of the energy E.

To find the position of the maximum of P (E) or equivalently of the maximum of its loga-
4I still haven’t defined clearly what temperature is but I ask you to just hold on with me for another section

or so and everything will become crystal clear.
5Notice the main difference with heat is characterized by the active nature of work compared to the automatic,

passive process of heat transfer
6by working out the problems in section 2 you will find that Ω(E) for the systems under consideration increases

sharply by increasing E



rithm,7 we need to find the value E = Ẽ such that:

d lnP

dE
=

1

P

dP

dE
= 0 (34)

Combining eq.32 and eq.33 we get:

lnP (E) = lnC + ln Ω(E) + ln Ω′(E′) (35)

Hence eq.34 becomes
∂ ln Ω(E)

∂E
+ (−1)

∂ ln Ω′(E′)

∂E′
= 0 (36)

or
β(Ẽ) = β′(Ẽ′) (37)

where Ẽ and Ẽ′ correspond to the energies of A and A′ at the maximum probability P(E), and
where we introduced the definition of a new quantity β with dimensions of a reciprocal energy:

β(E) =
∂ ln Ω

∂E
(38)

It is convenient to introduce a new dimensionless parameter T , known as the temperature of
the system and defined as:

T =
1

kβ
(39)

1

T
=
∂S

∂E
(40)

where k is some the well known Boltzmann’s constant having the dimensions of energy and
we introduce another new quantity S known as the entropy of the system which is equal to
S = k ln Ω.

We pointed out already that the maximum exhibited by P (E) at the energy Ẽ is very sharp,
therefore there is a overwhelmingly large probability that at thermal equilibrium, the final energy
of system A will be very closed to Ẽ and that of system A′ will be very closed to Ẽ′. We can
conclude then that at thermal equilibrium two conditions must be satisfied:

a) S0 = S + S′ = maximum

b) T=T’
7we can make this assertion since changing from P (E) to lnP (E) is a one to one mapping of a strictly increasing

function which therefore does not change the location of the maximum



3.2 Temperature & Entropy

We have now seen that particles and energy tend to rearrange themselves until the multiplicity
Ω is at (or very near) its maximum value. Notice that this condition is true, provided that we
have enough particles and units of energy for the statistics of very large numbers to apply. That
said, we have just stumbled upon a new law of physics, also known as the second law of
thermodynamics:

The spontaneous flow of energy stops when a system is at, or very near, its most likely
macrostate, that is, the macrostate with greatest multiplicity

Or more simply:

Multiplicity tends to increase

Now the intuition behind the definition of this new quantity, the entropy, is very simple.
Since multiplicities tend to be very large numbers, which are very nasty to work with,it was
found more convenient to work with the logarithm of the multiplicity instead of the multiplicity
itself. For historical reasons it was also multiplied by the Boltzmann constant such that:

S = k ln Ω (41)

In short, the entropy is just the logarithm of the number of ways of arranging the system (times
the Boltzmann constant). Since the natural logarithm is a monotonically increasing function,
a macrostate with higher multiplicity will also have higher entropy. We can thus restate the
second law of thermodynamics in what is known as its most famous form:

Entropy tends to increase

The second condition for equilibrium, in subsection 3.1, is given in terms of the this new
parameter T . If two systems, separately in equilibrium, are characterized by the same value of
this parameter, then the systems will remain in equilibrium when brought into thermal contact
with each other. From this definition it follows what is known as the the zeroth law of
Thermodynamics:

If two systems are in thermal equilibrium with a third system, then they must be in thermal
equilibrium with each other

On the other hand, if the two systems are characterized by different values of this parameter,
they will not remain in equilibrium when brought in thermal contact. However, if these two
systems are left in thermal contact long enough, eventually they will reach the equilibrium and
will present a new and equal value of the parameter.



T is known as the temperature of the system and, according to the discussion above, is,
in a somewhat naive way, the “thing” that’s the same for two objects, after they have been in
contact long enough.

To better understand the nature of this new thermodynamical concept we need to explore
how it changes to bring the composite system to its most probable state. We know, according to
the second law of thermodynamics, that in the process entropy needs to increase. We can then
write this condition in the following form:

∆S + ∆S′ ≥ 0 (42)

∂S(Ei)

∂E
∆E +

∂S(E′i)

∂E
∆E′ ≥ 0 (43)

Where ∆E′ = ∆E since the composite system is isolated and thus the total energy transferred
to one system has to be the same as the one given up by the other.

Now, without loss of generality, we can assume that in this process the energy transfer happens
only spontaneously through heat Q. Thus, we can then rewrite eq.43 in the more compact form:

(
1

Ti
− 1

T ′i

)
Q ≥ 0 (44)

Where we substitute 1
T = ∂S

∂E .
From this equation, it is clear that if Q ≥ 0 then Ti ≤ T ′i . Hence, positive heat is always

absorbed by the system at lower temperature and given off by the system at higher temperature.
More generally if two objects are in thermal contact, the one that tends to spontaneously lose
energy is that at the higher temperature. With this convention in mind let’s now restate the
theoretical definition of temperature:

Temperature is the measure of the tendency of an object to spontaneously give up energy
to its surroundings.

3.2.1 Limiting behaviour

The next question becomes what happens to the entropy and the temperature in the limiting
case of very large and very small E.

As one goes to lower energy, every system described by quantum mechanics approaches the
lowest possible energy E0 of its ground state. Corresponding to this energy there exists usually
only one possible state, or there may be a relatively small number of degenerate states at energy
E0. Since S = k ln Ω, one can assert to excellent approximation that the entropy becomes
vanishingly small as the system approaches its ground state energy.8. In symbols:

as E → E0; Ω→ 1; S → 0 (45)
8in the case of degenerate ground state, we can assert that as E → E0 S → S0



This limiting behaviour of S can also be expressed in terms of the temperature of the system.
From eq.44 we can show that ∂T

∂E > 0 which tells us that the temperature of a system has to
increase with its energy.9

Hence it follows that as the energy decreases towards E0, T decreases and becomes very
small. In the limiting case, T → 0, E must increasingly approach E0 and by virtue of eq.45, the
entropy must then become negligibly small. Thus:

as T → 0; S → 0 (46)

This can also be seen as a particular instance of the third law of thermodynamics, in the
case of no degeneracy at the ground state. More generally, the third law states that, given Ω0

states at the lowest energy E0, The entropy S of a system has the limiting property that:

as T → 0+; S → S0 (47)

where S0 is a constant independent of all parameters of the particular system.

3.3 More exam problems

3.3.1 Exercise

Consider 2 Einstein solids: A (with NA and qA) and B (with NB and qB), together in an
isolated system and let them exchange energy.

a) If qA + qB = 100 units, NA = 300, and NB = 100, how many units of energy are left in A
at equilibrium?

b) What is the maximum of the multiplicity of the combined system?

c) What are the slopes ∂ ln ΩA
∂qA

and ∂ ln ΩB
∂qB

and how are they related to the maximum of
ln(Omegatot)?

d) We now want to investigate the shape of the multiplicity near its peak. For simplicity, take
the limit of qA = qB = q

2 , NA = NB = N with qA ≫ NA. Expand around the maximum
of the total multiplicity and give an expression for the dispersion in terms of q and N .

Hint : for part d) recollect the result found in exercise 2.2.1 for one solid.

3.3.2 Exercise

Prove that ∂T
∂E ≥ 0.

Hint : it might be easier to start by showing ∂β
∂E ≤ 0. Think about what kind of shape should

the probability distribution have and therefore what constraints need to be put for on the values
of these partial derivatives.

9if it’s not completely clear why this is true, do not worry for now, you will prove it in one of the exercises at
the end of the section!



3.3.3 Exercise

Given that p = 1
β
∂ ln Ω
∂V , prove the equation of state of a monoatomic ideal gas:

pV = NkT (48)

where N is the total number of molecules.

3.3.4 Exercise

Consider two spin systems A and A′ placed in an external field H. System A and A′ consist
respectively of N and N ′ weakly interacting particles of spin 1

2 and magnetic moment µ and µ′.
The two systems are initially isolated with respective total energies bNµH and b′N ′µH ′. They
are then placed in thermal contact. Assume that |b|≪ 1 and |b′|≪ 1 so that you can apply
the result found in part c) of exercise 2.1.1.

a) In the most probable situation, how is the energy Ẽ of system A related to the energy Ẽ′

of system A′?

b) What is the value of Ẽ of system A?

c) What is the probability P (E)dE that A has its final energy in the range between E and
E + δE?

d) What is the dispersion (∆E)2 in the final equilibrium situation?

e) What is the value of the relative energy spread (∆E)2

Ẽ
in the case when N ′ ≫ N?

3.3.5 Exercise

Show that the entropy of a spin chain is given by S = Nk[ln(2 coshx)−x tanhx] with x = µH
kT .

What is S as T → 0 and T →∞?

3.3.6 Exercise

A system consists of N1 molecules of type 1 and N2 molecules of type 2 confined within a
box of volume V. The molecules are weakly interactive and constitute an ideal gas mixture.

a) How does the total number of states Ω(E) depends on the volume V of the system?

3.3.7 Exercise

A box is separated by a partition which divides its volume in the ratio 3 : 1. The larger
portion contains 1000 molecules of Ne gas; the smaller contains 100 molecules of He gas. A
small hole is punctured in the partition, and one waits until equilibrium is reached

a) Find the mean number of molecules per type on both sides of the partition



b) What is the probability of finding all 1000 molecules of Ne gas still in the larger portion
and all 100 molecules of He gas in the smaller portion?

3.3.8 Exercise

Let’s consider the thermal interaction between two systems where one is very much larger
than the other. If the system A′ is so large that its temperature parameter remains essentially
unchanged, irrespective of any amount ∆Q′ which it may absorbs, is then said to act as a heat
reservoir, with respect to the small system A. In symbols this condition says that A′ is such
that:

∂β′

∂E′
Q′ ≪ β′ (49)

Prove that ∆S′ = Q′

T ′

3.3.9 Exercise

Recall the result you found in exercise 2.2.1 for the multiplicity an Einstein solid with N

harmonic oscillators and q units of energy.

a) Compute the Entropy of the system.

b) We know that the mean energy of the system is E = q~ω. Now let’s define the heat
capacity as C = ∂E

∂T . Prove that by expanding to second order in the energy level spacing,
~ω
kT , that the heat capacity is given by:

C = Nk[1− 1

12
(
~ω
kT

)2]. (50)

c) What happens at very low temperatures? Does it follow the 3rd law of Thermodynamics?
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