



Euclid eWorkshop # 5Solutions

SOLUTIONS

SOLUTIONS

1. It is known that

$$\frac{t_{11} + t_{13}}{t_5 + t_7} = \frac{187500}{1500}$$
$$\frac{ar^{10} + ar^{12}}{ar^4 + ar^6} = 125$$
$$\frac{ar^{10}(1 + r^2)}{ar^4(1 + r^2)} = 125$$
$$r^6 = 125$$

Thus $r = \pm \sqrt{5}$. Hence a = 10 and the first 3 terms are $10, \pm 10\sqrt{5}, 50$.

2. Let d be the common difference in the arithmetic sequence. Then b-c=-d, c-a=2d and a-b=-d. Thus we find the equations

$$-dx^{2} + 2dx - d = 0$$
$$dx^{2} - 2dx + d = 0$$
$$-d(x - 1)^{2} = 0$$

and since $d \neq 0$ we have x = 1.

3. We have $\frac{x+y}{2} = 4$ and xy = 9. Thus $\frac{1}{x} + \frac{1}{y} = \frac{x+y}{xy} = \frac{8}{9}$.

4. We let the numbers be $\frac{a}{r}$, a, ar. Thus $a^3 = 125$ and a = 5, and the numbers are $\frac{5}{r}$, 5, 5r. If the common difference in the arithmetic sequence is d, then

$$\frac{5-\frac{5}{r}}{5r-5} = \frac{2d}{3d}$$

$$3(5-\frac{5}{r}) = 2(5r-5) \quad \text{dividing by } d$$

$$3-\frac{3}{r} = 2r-2 \quad \text{dividing by } 5$$

$$0 = 2r^2 - 5r + 3$$

$$0 = (2r-3)(r-1)$$

So we have two solutions: $r = \frac{3}{2}$ gives the numbers $\frac{10}{3}$, 5, and $\frac{15}{2}$, while r = 1 gives the (trivial) numbers 5, 5, 5.

SOLUTIONS

5. Our sum is

$$\sum_{k=1}^{N} \frac{k^2 + k}{2} = \frac{\sum_{k=1}^{N} k^2 + \sum_{k=1}^{N} k}{2}$$

$$= \frac{\frac{N(N+1)(2N+1)}{6} + \frac{N(N+1)}{2}}{2}$$

$$= \frac{N(N+1)}{4} \left(\frac{2N+1}{3} + 1\right)$$

$$= \frac{N(N+1)(N+2)}{6}$$

$$\sum_{k=1}^{200} \frac{k^2 + k}{2} = \frac{200 \cdot 201 \cdot 202}{6}$$

$$= 1353400.$$

- 6. Represent the angles with the variables a-2d, a-d, a, a+d and a+2d. The sum of these is 540° . Therefore $5a = 540^{\circ}$ and $a = 108^{\circ}$. So either $a - d = 90^{\circ}$ or $a - 2d = 90^{\circ}$. So the largest angle is either 126° or 144° .
- 7. We let the 4 positive integers be represented by k, kr, kr^2 and kr^3 . Then

$$kr + kr^2 = 30\tag{1}$$

$$k + kr^3 = 35 \tag{2}$$

Dividing (2) by (1) gives

$$\begin{split} \frac{k+kr^3}{kr+kr^2} &= \frac{35}{30} \\ \frac{1+r^3}{r+r^2} &= \frac{7}{6} \text{ since } k \neq 0 \\ 6r^3 - 7r^2 - 7r + 6 &= 0 \end{split}$$

By inspection we find that r = -1 is a solution. Using the factor theorem (see workshop 2), we arrive at

$$(r+1)(2r-3)(3r-2)=0$$

$$r=-1,\frac{2}{3} \text{ or } \frac{3}{2}$$

Using r = -1, equation (2) gives 0k = 35, which is impossible.

Using $r = \frac{2}{3}$ in (1), we find k = 27. Using $r = \frac{3}{2}$ in (1) we find k = 8.

Both of these give the same list of numbers, and when arranged in increasing order they are (a, b, c, d)(8, 12, 18, 27).

- 8. The sequence is arithmetic if and only if $t_1 + t_3 = 2t_2$. There are 27 equally likely ways to pick 3 numbers, of which only 5 lead to such a sequence:
 - 1,4,7
 - 1,5,9
 - 2,5,8
 - 3,5,7
 - 3.6.9

So the probability is $\frac{5}{27}$.

SOLUTIONS

- 9. The average of the numbers, the middle number is $\frac{500}{25} = 20$. Thus the smallest is 8.
- 10. The difference is 2 so $n-1 = \frac{1994 (-1994)}{2}$ and n = 1995.
- 11. (a) $S_1=t_1=2.$ $S_2=t_1+t_2=8$ so $t_2=6.$ $S_3=t_1+t_2+t_3=26$ so $t_3=18.$ (b)

$$\frac{t_{n+1}}{t_n} = \frac{S_{n+1} - S_n}{S_n - S_{n-1}}$$

$$= \frac{(3^{n+1} - 1) - (3^n - 1)}{(3^n - 1) - (3^{n-1} - 1)}$$

$$= \frac{3^n \cdot 2}{3^{n-1} \cdot 2}$$

- 12. The first such term is 42 and the last is 28000. So $n-1=\frac{28000-(42)}{7}$ and n=3995.
- 13. We know $f(n+1) = f(n) + \frac{1}{3}$ so the sequence is arithmetic. So $f(100) = 2 + 99(\frac{1}{3}) = 35$.
- 14. Substituting for x and y, -p + 2q = r so q p = r q and we are done!
- 15. For any 3 term geometric sequence, $t_1t_3=(t_2)^2$. So

$$(a+4d)(a+15d) = (a+8d)^{2}$$

$$a^{2} + 19ad + 60d^{2} = a^{2} + 16ad + 64d^{2}$$

$$3ad = 4d^{2}$$

$$d = \frac{3}{4}a \text{ or } d = 0$$

Thus the general term is

$$t_k = a + (k-1)\frac{3}{4}a$$
$$= \frac{a}{4}(3k+1)$$

We want to find terms $t_l t_m, t_n$ that form a geometric sequence, thus $t_l t_n = (t_m)^2$. We can do this by choosing integers a and b and letting

$$3l + 1 = (2a)^2$$

$$3n+1=(2b)^2$$
 and

$$3m + 1 = 4ab.$$

Then $t_l = \frac{a}{4}(4a^2) = a^3$ and similarly, $t_n = ab^2$ and $t_m = a^2b$. Thus $t_lt_n = a^4b^2 = (t_m)^2$. However we must add the extra condition that a and b must both be congruent to 1 modulo 3 or both be congruent to 2 modulo 3. There are infinitely many such pairs.

- 16. The sequence goes $5, 3, -2, -5, -3, 2, 5, 3, \ldots$ The sequence repeats in groups of 6 whose sum is 0. So the sum of 32 terms is 5 + 3 = 8.
- 17. $t_4 = \frac{1}{3}t_2 = -\frac{1}{3}$

$$t_6 = \frac{3}{5}t_4 = -\frac{3}{5} \cdot \frac{1}{3}$$

$$t_{1998} = -\frac{1995}{1997} \cdot \frac{1993}{1995} \cdot \frac{1991}{1993} \cdot \frac{1989}{1991} \cdot \dots \cdot \frac{1}{3} = -\frac{1}{1997}$$

18. Since the first term is 548 and the difference is -7 the sum is $S_n = \frac{n}{2}(1096 + (n-1)(-7))$. Thus the sum is negative when (1096 + (n-1)(-7)) < 0 and that is n > 157.