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3 Algebra

• General

– Be explicit about assigning your variables. Writing a note to yourself at the beginning of your work
such as “x=Bob’s speed, t=time for Alice to finish first leg” may save you a headache later on.

– When you have a word problem, the first thing to do is to convert it into equations - keeping the
first point in mind!

– Before diving into complicated algebra, take a minute or two to see if there’s a simpler method. If
you don’t see one, feel free to bash away, but there’s often a nice simplification you can make right
away.

– Keep looking for better methods throughout your algebra - it might take you a few steps to notice
the key insight, and even if there isn’t any key insight to be had, there are still often little tricks you
can perform to make your life a bit easier.

• Solving equations

– Watch out for extraneous solutions. If you’re doing anything non-reversible, such as squaring, check
your solutions at the end.

– Also watch out for division by expressions that could possibly be 0. Usually you want to factor rather
than divide - e.g. write a2 = ab as a(a� b) = 0 instead of dividing through by a.

– Don’t multiply out big constants until you have to; you’re far more likely to recognize
3 · 22 · 53
7 · 11 · 53

simplifies than you are to notice
3498

4081
does.

• Useful factorizations

– Di↵erence of squares: x2 � y2 = (x� y)(x+ y)

– Square of sum (2-var): x2± 2xy+ y2 = (x± y)2, 3-var: x2+ y2+ z2+2xy+2yz+2zx = (x+ y+ z)2

– Sum of cubes: a3 + b3 = (a+ b)(a2 � ab+ b2), di↵erence: a3 � b3 = (a� b)(a2 + ab+ b2)

– Binomial Theorem: (x + y)n = xn +
�
n

1

�
xn�1y +

�
n

2

�
xn�2y2 + . . . +

�
n

n�1

�
xyn�1 + yn - used often

when expressions are ”close” to (x+ y)k (e.g. x3 + 3x2 + 3x = 999; find x)

• Substitutions:

– Always consider swapping in di↵erent variables to make things easier; even auxilary variables like
y = x� 42 can simplify your algebra a bit.

– Use substitutions to clear out fractions or nasty radicals - work with integers whenever possible

– If you get an equation in terms of, for example, x+ y and x� y, consider writing x� y = n, solving
for x+ y in terms of n, and then expressing both x and y in terms of n - this essentially reduces the
number of variables.

• Sequences/series: a1, a2, a3, . . . , an

– Arithmetic: kth term a1 + (k � 1)d where d is the common di↵erence, sum n · a1 + an
2

.

– Tip: When working with arithmetic sequences, it’s often better to write them as ..., a�2r, a�r, a, a+
r, a+ 2r, ... instead of a, a+ r, . . ..

– Geometric: kth term a1 ·rk�1 where r is the common ratio, sum
a(1� rn)

1� r
(when |r| < 1 and n ! 1,

this becomes
a

1� r
).

– General strategy for other series (e.g. arithmetico-geometric): Write the sum as S and multiply by
the common ratio, e.g. S = r+2r2+3r3+ . . . =) rS = r2+2r3+ . . . =) S�rs = r+r2+r3+ . . .,
causing reduction to to a geometric series.

– 0.a1a2 . . . an =
a1a2 . . . an
10n � 1

; e.g. 0.135 =
135

999
=

5

37

– When given a sequence with a seemingly arbitrary rule (e.g. an = an�1�an�2), list out the first few
terms to see if there’s a pattern you can prove.
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– Telescoping: If you can manage to write a sequence in a form similar to an = bn � bn�1 (for some

sequence bn) - for example,
1

n(n+ 1)
=

1

n
� 1

n+ 1
- try adding up the terms from a1 to an for heavy

cancellation:

1

1 · 2 +
1

2 · 3 + . . .+
1

n(n� 1)
=

1

1
� 1

2
+

1

2
� 1

3
+ . . .+

1

n� 1
� 1

n
=

n� 1

n

– A couple common series you should know:

⇤ 1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
⇤ 1 + 3 + 5 + . . .+ 2(n� 1) = n2

⇤ 2 + 4 + 6 + . . .+ 2n = n(n+ 1)

⇤ 12 + 22 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
⇤�13�+�23�+�.�.�.�+�n3�=�(1�+�2�+�3�+�.�.�.�+�n)�.

• Rate problems: d = rt

– Make sure all your units are the same! Keep everything in miles per hour, or units per minute, or
whatever is convenient - but be consistent.

– You can often make simplifying assumptions such as ”assume the length of this track is 100m” or
”assume I’m moving at 1 mph” - this can simplify things a lot.

– If things get messy, consider changing the reference frame. For example, if two people are moving at
speeds of 15 and 20 mph in the same direction, you can view this from the first person’s perspective
of ”I’m not moving, and the other person is moving away at 5 mph”.

• Polynomials: P (x) = anxn + an�1xn�1 + . . .+ a0 = an(x� r1)(x� r2) . . . (x� rn)

– Useful root tidbits: There are exactly n roots (up to multiplicity). As a collollary, if P (x) = Q(x)
for n + 1 di↵erent values of x, then P (x) = Q(x) for all x. If the coe�cients are real and a + bi is
a root, so is a� bi (and the multiplicities are the same). If the coe�cients are rational and a+ b

p
c

is a root (for squarefree c), so is a � b
p
c (and, again, multiplicities are the same). Corollary: any

polynomial with odd degree has at least one real root.

– Vieta’s formulas: r1 + r2 + . . .+ rn = �an�1

an
,�r1r2�+�r�r3�+�.�.�.�+�rn�1rn�=

an�2

an
, . . ., r1r2 . . . rn =

(�1)n · a0
an

.

– Factorization: Try easy roots, such as integers dividing a0 or rationals
m

n
withm | a0, n | an (Rational

Root Theorem).

– Transformations: xnP (
1

x
) reverses the coe�cients and has reciprocal roots. P (x � c) has roots

r1 + c, r2 + c, . . .; P (cx) has roots
r1
c
,
r2
c
, . . ..

– Symmetric polynomials: Consider dividing by x
b
n

2
c
and rewriting in terms of y = x+

1

x
(x2 +

1

x2
=

y2 � 2, x3 +
1

x3
= y(y2 � 3), etc.)

– You can usually assume the polynomial is monic (an = 1) and fix it later if necessary; makes life a
bit easier

• Logarithms: log
a
(b) = c () ac = b

– From definition: aloga(b) = b, log
a
(b) = log

ac(bc)

– Sum: log
a
(b) + log

a
(c) = log

a
(bc), Di↵erence: log

a
(b) � log

a
(c) = log

a

✓
b

c

◆
; implies log

a
(bc) =

c log
a
(b)

– Change-of-base: log
a
(b) =

log
c
(b)

log
c
(a)

for any c

– Always try to make logarithms have the same base. log4 x+ log8 y might not look like it simplifies,
but writing it as log64 x

3 + log64 y
2 makes it more obvious (by the way, 64 is usually better than 2

here to be able to work with integer powers)
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• Trigonometry

– Know common trig values! Have cos ✓, sin ✓ memorized for
⇡

6
,
⇡

4
| ✓

– Sum/di↵erence: sin(↵±�) = sin↵ cos�±sin� cos↵, cos(↵±�) = cos↵ cos�⌥sin↵ sin�, tan(↵±�) =
tan↵± tan�

1⌥ tan↵ tan�

– Useful: ei✓ = cos ✓ + i sin ✓ - can use to rederive above (e↵+� = e↵ · e�)

– Sum-to-product: sin↵ + sin� = 2 sin

✓
↵+ �

2

◆
cos

✓
↵� �

2

◆
- derive using sin

✓
↵+ �

2
+

↵� �

2

◆
+

sin

✓
↵+ �

2
� ↵� �

2

◆
(analogous formulas for cos follow similarly)

– Double-angle: sin(2✓) = 2 sin ✓ cos ✓, cos(2✓) = cos2 ✓ � sin2 ✓ = 2 cos2 ✓ � 1 = 1 � 2 sin2 ✓ (special
case of sum/di↵erence above)

– Trig substitutions: Be on the lookout for conditions like a2 + b2 = r2 - this usually suggests sub-
stituting a = r cos ✓, b = r sin ✓ (especially if r = 1). Similarly, sequences like an = 2a2

n�1 � 1 or

am+n =
am + an
1� aman

suggest representing a1 as the appropriate trig function (cosine and tangent in

these examples).

• Inequalities - a1, a2, . . . , an, b1, b2, . . . , bn positive reals:

– Trivial: x2 � 0 for real x

– QM-AM-GM-HM:
r

a21 + a22 + . . .+ a2
n

n
� a1 + a2 + . . .+ an

n
� n

p
a1a2 . . . an � n

1

a1
+

1

a2
+ . . .+

1

an

– More generally: Define pk =
k

r
ak1 + ak2 + . . .+ ak

n

n
(with p0 the geometric mean) - then a � b =)

pa � pb (the above is equivalent to p2 � p1 � p0 � p�1)

Equality occurs at a1 = a2 = . . . = an

– Cauchy-Schwartz:

(a21 + a22 + . . .+ a2
n
)(b21 + b22 + . . .+ b2

n
) � (a1b1 + a2b2 + . . .+ anbn)

2

Equality occurs at
a1
b1

=
a2
b2

= . . . =
an
bn

.

– Rearrangement: Suppose a1 � a2 � . . . � an and b1 � b2 � . . . � bn, and � is a permutation of the
bi. Then

a1b1 + a2b2 + . . .+ anbn � a1b�(1) + a2b�(2) + . . .+ anb�(n) � a1bn + a2bn�1 + . . .+ anb1

(In other words, choose greedily)

• Roots of unity: rn = 1

– Recall ei✓ = cos ✓ + i sin ✓ - important here

– r = e

2n⇡i

k = cos

✓
2n⇡

k

◆
+ i sin

✓
2n⇡

k

◆
for k = 1, 2, . . . , n.

– rn � 1 =) (r� 1)(rn�1 + rn�2 + . . .+ 1) = 0 =) rn�1 + rn�2 + . . .+ 1 = 0, as long as r 6= 1. For
example, if ! is a third root of unity, !2 + ! + 1 = 0.

– Consider cos and sin as the real/imaginary parts (respectively) of a root of unity - this will help you
find sums such as

179�X

k=0�

cos(2k) =
179�X

k=0�

Re
⇣
e

k⇡i
90

⌘

= Re

 
179�X

k=0�

e
k⇡i
90

!

which is now the real part of a geometric series equal to
1(1� (e

⇡i
90 )180)

1� e
⇡i
90

= 0.
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• Functional equations (*)

– Keep in mind that most functional equations are identities. In other words, you can plug in anything
in the domain if it will help.

– Common things to plug in: Zero, x = y, anything that results in cancelling an f(something) term

(such as plugging in (x,
1

x
) in f(x) + f(y) = (xy � 1)f(x)f(y)).

– Many functional equations you’ll see are cyclic; i.e. the variables used cycle. For example, if you

see f(x) + f

✓
2

x

◆
or f(x) + f(1 � x), you can also plug in x ! 2

x
or x ! 1 � x to get the same

expression.

– Some common strategies: Let f(1) = c and try to describe the other values in terms of c; Plug
in another f term (e.g. if f(f(x)) = x2, plug in f(f(f(x))) = f(x)2 =) f(x2) = f(x)2); write
f(x) = xg(x) or similar - the point being to keep trying to reduce things by writing them in terms
of other functions; reduce an equation to f(x + y) = f(x) + f(y) which often implies f(x) = cx for
some constant c (the other solutions are not nice at all, and if this ever comes up on an AIME you
can probably safely assume the linear solution).
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4 Combinatorics

• General

– Many early Combinatorics problems are about good bookkeeping: making sure you’ve accounted for
all of the cases, that you’ve counted everyone the appropriate number of times, and so on. Be sure
to work deliberately on these, and constantly be checking to make sure you’ve done so.

– Combo is the biggest source of the “ugh, I was o↵ by one” regrets that flood the forums immediately
upon unlocking. Make sure this isn’t you! Check the bounds in the problem, make notes of < vs. 
and similar such things, and take a minute at the end of your solution to ask yourself if everything
works out. Checking the extreme points (usually the smallest and/or largest solutions) can also go
a long way towards avoiding this.

– Don’t forget cases where you “do nothing” - it is for this reason that 0! = 1, and similarly why a0 = 1
in many recursions rather than a0 = 0.

• The basics

– Generally, when you need to do things like “draw k marbles” or “form a committee”, it’s best to
look at it like you’re doing things one at a time. For example, instead of selecting 5 people to form
a committee, look at the first person and think about what happens if he goes in the committee and
what happens if he doesn’t.

– Don’t forget about complimentary counting! It’s often easier to count what you don’t want and
subtract it o↵ from the total number of possibilities than to work constructively. For example, how
many four-digit numbers don’t contain a 1?

– The principle of inclusion-exclusion (PIE) is powerful, but the important thing is to know what
you’re trying to do: PIE works because it counts every possbility exactly once with strategic count-
ing and overcounting. Keeping track of how many times you’re counting something will help you
solve problems where PIE isn’t directly applicable, e.g. “how many have exactly two of the three
characteristics”?

• Changing perspective

– In problems where we have to account for rotations and/or reflections, it’s often simplest to fix one
of the points - e↵ectively looking at the entire situation from its perspective (if you’re standing at
a round table, and the whole room suddenly rotates, the situation looks exactly the same to you as
before).

– The same strategy of “fixing” points applies in other places as well - if you need to choose one of 9
numbers in a set, for example, and which one you choose doesn’t make a di↵erence, just abitrarily
pick one and remember to multiply by 9 at the end.

– Additionally, in problems where there’s a lot going on - for example, the sum of all positive di↵erences
of two elements in some set - a good strategy is to focus on one particular element and see how its
a↵ected. For example, in the AIME problem below, focusing on what happens to each specific
element quickly results in a solution.

– Let S = {20, 21, . . . , 210}. Consider all possible positive di↵erences of pairs of elements in S. Let N
be the sum of all those di↵erences. Find the remainder when N is divided by 1000.

• Combinations/Permutations

– There are

✓
n

k

◆
=

n!

k!(n� k)!
ways to choose k members from a set of n objects, if we don’t care

about the order (formally: there are

✓
n

k

◆
subsets of S, where |S| = n, of cardinality k. There are

nPk =
n!

(n� k)!
ways to choose the k members if order does matter. These are both 0 by convention

if n < k.

– Know basic binomial-coe�cient rules:

✓
n

k

◆
=

✓
n

n� k

◆
(choosing a subset is equivalent to choosing

its complement),

✓
n

k

◆
=

✓
n� 1

k � 1

◆
+

✓
n� 1

k

◆
(we can either put the first element in our subset or

not), etc.
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– Know small common values of binomial coe�cients; you should probably know the values of

✓
n

k

◆

up through

✓
10

5

◆
or so from experience by now.

• Symmetry

– Always look to exploit symmetry! If you’re looking for the probability of something, and its comple-

ment is the exact same scenario, you immediately know the answer is
1

2
without any work.

– Be careful for cases where there’s equality however - depending on the problem, you may have to
handle it di↵erent.

– A simple example: Suppose you flip a coin 4 times. What is the probability that you get more heads
than tails?

– Solution: The probability of getting more heads than tails is symmetrically equal to the probability

of getting more tails than heads... but the answer isn’t immediately
1

2
because we need to account

for the case where the numbers of heads and tails are equal. That probability is
3

8
, so our answer is

in fact
1� 3

8
2

=
5

16
. Note that if there were an odd number of coins, the answer would indeed be

exactly
1

2
.

– Take also the classic: Alice flips n + 1 coins and Bob flips n coins. What is the probability that
Alice gets more heads than Bob? Well, consider the first coin Alice flips. If it’s heads, she just needs

to get at least as many heads as Bob gets, which has a
1 + p

2
chance of happening where p is the

probability of them getting the same number of heads among their n coins. If it’s instead tails, now

she needs to get more heads than Bob, which has a
1� p

2
chance of happening. The answer is then

1

2

✓
1 + p

2
+

1� p

2

◆
=

1

2
!

• Stars-and-bars or Balls-and-urns

– If a1, a2, . . . , ak are nonnegative integers satisfying a1 + a2 + . . . + ak = n, there are

✓
n+ k � 1

k � 1

◆

possible assignments of the ai. If the ai are necessarily positive integers, there are

✓
n� 1

k � 1

◆
possible

assignments.

Proof: Consider n stars and k � 1 bars being arranged - the number of stars between each bar
(counting the start and end of the string as bars) determine one of the ai. In the positive case,
consider n� k of the stars instead and add one in to each group after the assignment.

– If instead a1 + a2 + . . .+ ak  n, we can add another variable ak+1 = n� a1 � a2 � . . .� ak to get

a1 + a2 + . . . + ak+1 = n, which has

✓
n+ k

k

◆
solutions. Incidentally, this proves the Hockey Stick

identity.

– Clever applications of this usually involve looking at the gaps between things we’re placing down.
For example, how many ways can we park two indistinguishable cars in a row of 12 parking spaces,
if they both take up 3 spaces? We can look at the gaps between the start and the first car, the gap
between the cars, and the gap between the last car and the end (each of which might be zero), which

total 6 spaces - hence a1 + a2 + a3 = 6 and there are

✓
8

2

◆
= 28 possible assignments.

• Binary

– Be on the lookout for conversions to other bases, especially binary!

– Whenever you see a lot of powers come up, whether explicitly or implied, consider looking at it in
other bases.

– Functions satisfying things such as f(2x) = f(x) are prime candidates for a binary interpretation,
especially if you see something like f(2x+ 1) = f(x) + 1 to go along with it.
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– One famous example is “A function satisfies f(0) = 0, f(2x) = f(x), f(2x + 1) = f(x) + 1 for all
nonnegative x. What is the maximum possible value of x on the interval [0, 2015]? The solution
here is that f(x) is counting the number of 1s in xs binary representation, making the answer 10 (as
10232 has 10 1s).

• Invariants

– Whenever you’re generating a sequence, moving around a plane, or lopping o↵ hydra heads, look for
what doesn’t change. For example, take the classic:

– Heracles wishes to kill the 100-headed hydra. He can only slice o↵ exactly 2, 4, or 10 heads with one
blow, but the hydra will grow back 5, 1, and 4 heads in those respective cases. Can Heracles ever
kill the hydra? The answer is no, because the number of heads always changes by a multiple of 3,
meaning it will always have a positive number of heads.

– Similarly, if a robot can move from the point (x, y) to the points (x+7, y+2), (x+2, y+7), (x�5, x�10),
or (x � 10, y � 5), note that there are two important invariants: the sum x + y remains constant
modulo 3, and the di↵erence y � x remains constant modulo 5.

The rest of the combinatorics section gets pretty advanced - feel free to skip this material if you don’t feel
confident tackling the later 5 questions yet.

• ”States”

– This concept is a somewhat di�cult one to verbalize, but is also one of the most important (encom-
passing both recursion and expected value). So pay attention!

– The general idea is to view situations as ”states”, and actions as passing between them. This sounds
vague, so we’ll illustrate with a simple example:

– Alice and Bob alternately flip a coin. The winner is the player who first flips heads. What is the
probability Alice wins?

The canonical way of solving this problem involves writing out an infinite geometric series, but this
doesn’t scale well to harder problems and is error-prone anyway. Instead we have a much better (and

generalizable) method using the concept of states. Suppose p is the desired probability. There is a
1

2

chance that Alice wins on her first turn, and a
1

2
chance that we pass to the state of it being Bob’s

turn. From the state of Bob’s turn, there is a probability of p that he wins - meaning there’s a 1� p
chance of Alice winning from this state.

– As a result, we can write p =
1

2
(1) +

1

2
(1� p) =) p =

2

3
.

– The key is to account for all possible states, which was easy in this case as there were only two - it
was Alice’s turn, or it was Bob’s turn - and to account for how we pass between those states. Let’s
see a slightly more di�cult example:

– Alice and Bob continuously roll a die. Alice wins when a sum of 12 appears, and Bob wins when two
consecutive sums of 7 appear. What is the probability Alice wins?

We enumerate the states beforehand: Either the previous roll was neither a 7 nor a 12 or the previous
roll was a 7 (or, of course, the game is over). Denote the probability that Alice wins from these states
to be p0 and p7 respectively. From the first state, we can either roll a 12 - immediately ending the
game in Alice’s favor, roll a 7 thus moving to the p7 state, or roll something else - thus staying in
the same state. As a result, we have the equation

p0 =
1

6
p7 +

1

36
(1) +

29

36
p0

From the p7 state, there’s a
1

6
chance that we roll a 7, thus ending the game in Bob’s favor, a

1

36

chance of rolling a 12, thus ending the game in Alice’s favor, and a
29

36
chance of rolling something

else, thus bringing us back to p0. As a result, we have

p7 =
1

6
(0) +

1

36
(1) +

29

36
p0

solving these equations gives us p0 =
7

13
, which is what we want as the game starts from the p0

position.
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• Recursion

– Recursion is a very special case of the ”states” concept above, where we only care about passing to
smaller states.

– Tip-o↵s to use recursion: We’re building something iteratively, such as a string; we’re representing
some number as a sum or product of others (e.g. writing n as the sum of powers of two); people are
rearranging themselves in some manner; we’re looking for some subset of a larger set with a certain
property; etc.

– These all boil down to the same thing: if we can remove a couple chairs/people/stairs/etc. and
end up with essentially the same problem (just di↵erent numbers), the solution is almost certainly
recursion.

– If we have a linear recurrence an = cn�1an�1 + cn�2an�2 + . . . + c0a0 where the ci are constants
(possibly zero), then we can find the roots r1, r2, . . . , rk of xn � cn�1xn�1 � . . . � c0 = 0, and the
general solution to the recurrance will be b1rn1 + b2rn2 + . . .+ bkrnk for some appropriate constants bi
(there are caveats with double roots, but they don’t come up very often). For example, suppose we
have an = an�1 + 2an�2. Then the roots of x2 � x� 2 = 0 are 2 and �1, so the general solution is
c1 · 2n + c2 · (�1)n for some constants c1, c2 (we’d need to know some values of ai, such as a0 and a1,
to determine them).

– Don’t be shy about using multiple co-dependent recurrances. It can be easier to work with things
such as an = an�1+bn�1, bn = bn�1+cn�1, cn = an�1+cn�1 than whatever single-variable recurrance
this solves to.

– For example, how many sequences of As and Bs have the property that every run of As has even
length and every row of Bs has odd length? Well, let An denote the number of such sequences that
begin with A and denote Bn similarly; then An = An�2 +Bn�2 and Bn = An�1 +Bn�2. Note that
we can ”reduce” this to F (n) = 2F (n � 2) + F (n � 3) � F (n � 4) were we so inclined, but this is
unlikely to be particularly helpful (since the characteric polynomial is a mess).

– If you’re working with a circle (which has become very common lately), break it into a line first by
considering one specific chair/person/etc. and work from there - lines are much nicer to work with
than circles!

• Expected value

– This is the more interesting version of the states concept, and can be thought of as a generalized
recursion.

– The trick here is exactly the same as how we handled the ”states” problems: focus on the possible
states and how we pass through them. Instead of the base cases being probabilities though, now
they’re expected values.

– An illustrative example: What is the expected number of flips before we flip two consecutive heads?
There are only two states here: we just flipped a tail, or we just flipped a head (of course, there is
the usual state of ”game over”). Call the expected number of flips from the tail state ET , and the
expected number of flips from the head state EH . We then have the following relationships (make
sure you see why):

ET =
1

2
(ET + 1) +

1

2
(EH + 1)

EH =
1

2
(ET + 1) +

1

2
(1)

which solves to ET = 6, our answer as the starting position is equivalent to ET .

• Roots of unity filter (*)

– Given a polynomial P (x), the sum of the coe�cients to the terms with degree divisible by k is given
by

1

k

�
P (!0) + P (!1) + . . .+ P (!)k�1

�

where ! denotes a primitive kth root of unity.

– The above may look scary, but the principle isn’t actually that complicated. How would we, for
example, find the sum of the coe�cients to the terms with even degree? The method for that is

well-known: we want
P (1) + P (�1)

2
, as all the terms with odd degree cancel out in the sum. The

general method takes advantage of the fact that 1 + ! + !2 + . . . + !k�1 = 0 unless ! = 1, which
occurs precisely when the term has degree divisible by k!



4 COMBINATORICS

– One application: find

✓
2013

0

◆
+

✓
2013

3

◆
+ . . .+

✓
2013

2013

◆
.

Solution: Let P (x) = (x+ 1)2013. Then

1

3
(P (1) + P (!) + P (!2)) =

22013 + (! + 1)2013 + (!2 + 1)2013

3

=
22013 + (�!2)2013 + (�!)2013

3

=
22013 � ! � !2

3
=

22013 + 1

3

where we used !2 + ! + 1 = 0,!3 = 1.

• Generating functions (*)

– Generating functions are about modeling situations with polynomials. For obvious reasons, we often
combine this with the roots of unity filter above.

– Generating functions are most useful when we’re moving about, by which we literally mean moving
about. For example, we can model walking on a number line with a generating function, as well as
around a polygon, a circle, and so on. We can also, with a bit of creativity, extend this concept to
things like rolling dice, building numbers (such as partitions), and so on. In fact, this is quite similar
to the ”states” concept as well.

– Let’s take an illustrative example - a rather famous one, in fact. Suppose we want to travel from
(0, 0) to (m,n) using a sequence of moves, each of which are either one unit up or one unit to the
right. In how many ways is this possible? Well, let’s look at one particular move: we can either
increase our x coordinate or increase our y coordinate - this is equivalent to multiplying by x+ y! If
we do this m+ n times, we can model the situation with the generating function (x+ y)m+n.

– The coe�cient of the xayb term is thus the number of paths to get from (0, 0) to (a, b); this makes

our answer

✓
m+ n

m

◆
by the Binomial Theorem.

– The key here is that, when two moves are modeled by generating functions G1(x), G2(x), we can
model the two steps with G1(x)G2(x).

– For example, one roll of a die can be modeled by the function x1+x2+x3+x4+x5+x6, one random
move on a number line can be modeled by the function x1 + x�1, one random diagonal move on a

plane by x+
1

x
+ y +

1

y
, and so on.
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5 Number Theory

• General

– Like in Algebra, the first step is usually to convert a word problem into equations. But here, it’s even
more important to choose your variables wisely: do we want to let x be an odd integer, or write it
as 2k + 1? The choices here are less clear and largely depend on the problem, but make sure you’re
at least conscious of your options.

– Remember that you’re dealing with integers. If there’s any possibility that your variables aren’t
integers, it probably isn’t actually a number theory problem. This is a blessing!

– One of the most basic things you can do is look at parity (odd or even). It’s usually easy to do, and
it can often reveal a lot about a problem!

• Divisibility rules

– Know the basics: a number is a multiple of 2 i↵ its last digit is, a multiple of 3 or 9 if the sum of its
digits is, a multiple of 4 if its last two digits is, a multiple of 5 if its last digit is, and a multiple of 11
if the alternating sum of its digits is.

– Keep in mind that both sides of an equality must be divisible by the same numbers. This sounds
obvious, but if you have something like 3b3 = 2a2, it means that a must be a multiple of 3 and b
must be a multiple of 2 (and, repeating this process, a a multiple of 18 and b a multiple of 6).

– When looking for divisibility, try breaking up your number into smaller, relatively prime parts. For
example, divisibility by 10 is the same thing as divisibility by 2 and 5; similarly, divisibility by 1001
is equivalent to divisibility by 7, 11, and 13.

– A note of warning in the above: Don’t make the mistake of saying a | n, b | n =) ab | n - this only
holds when a, b are relatively prime!

• Prime factorization

– In a lot of cases, the first thing you want to do is to consider the prime factorizations of numbers.

– We can interpret multiples and divisors more easily in terms of prime factorization: b is a multiple of
a (and a a divisor of b) if, for every prime p dividing a, the exponent of p in b is at least the exponent
of p in a. For example, 288 · 592 is a multiple of 1088 = 288 · 588, but 299 · 587 is not.

– It’s also much easier to notice cancellations when working with prime factors - you’ll notice 17 should
be canceled out in 2 · 13 · 17n = 11 · 17 · 23m easily, but not so much in 442n = 4301m.

– A basic but e↵ective method of prime factorizing numbers: start with 2, and divide your number by
2 as many times as you can (possibly not at all). Move on to 3, then 5, then 7, and so on. You can
stop when the number you’re trying to divide by is more than the square root of the number you’re
trying to divide, because otherwise you would have already found your answer.

– For example, prime factorizing 22176 might seem di�cult, but let’s go through our method: 22176 =
2 ·11088 = 22 ·5544 = 23 ·2772 = 24 ·1386 = 25 ·693 - now we move on to 3 - = 25 ·3 ·231 = 25 ·32 ·77
- now to 5, which doesn’t work, so on to 7 - = 25 · 32 · 7 · 11 - and we’re done (you might have noticed
the factor of 11 much earlier, such as at 11088).

• Di↵erence of squares, completing the square, and SFFT

– One of the simplest ways to solve Diophantines (equations with integer solutions) is to write a product
of numbers equal to a constant, allowing us to analyze its factors. For example, if ab = 80, we know
that a must be a factor of 80.

– One common usage of this is di↵erence of squares. If we know two squares di↵er by 80, we can
write a2 = b2 + 80 =) a2 � b2 = 80 =) (a � b)(a + b) = 80. Additionally, we might as well
assume b is positive, so a � b < a + b. This means we only have a few factor pairs to check, which
we can reduce even further since a� b, a+ b are of the same parity. Hence we’d only need to check
(2, 40), (4, 20), (8, 10), leading to the solutions 92 = 12 + 80, 122 = 82 + 80, 212 = 192 + 80.

– Oftentimes this isn’t written out so plainly for us: in those cases we complete the square instead.
For example, if a2 + 84a + 2008 = b2, we have (a + 42)2 + 254 = b2, so letting c = a + 42 we have
(b� c)(b+ c) = 244 =) b� c = 2, b+ c = 122 =) b = 62, a = 16.

– In some cases, instead of completing the square, we complete the rectangle - better known as Simon’s
Favorite Favoring Trick (SFFT). When we have an equation such as xy + 6x+ 6y = 0, we can write
this as xy+ 6x+ 6y+ 36 = 0 =) (x+ 6)(y+ 6) = 36, leading to the various solutions. These often

arise as a result of equations like
1

x
+

1

y
= 4.
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• Modular arithmetic: a ⌘ b (mod m) () m | a � b. We’ll denote by a (mod m) the unique b 2
{0, 1, 2, . . . ,m � 1} such that a ⌘ b (mod m); i.e. the remainder upon dividing a by m extended to
negative a.

– Know basic modular rules: if a1 ⌘ b1 (mod c) and a2 ⌘ b2 (mod c), then a1 + a2 ⌘ b1 + b2 (mod c),
a1a2 ⌘ b1b2 (mod c), etc.

– Corollary: an ⌘ (a (mod m))n (mod m).

– You can use modular arithmetic to reduce your search space when solving Diophantines. For example,
if you want the number of [positive integer] solutions to 2a+ 5b = 2013, you know 2a ⌘ 3 (mod 5),
so a ⌘ 4 (mod 5) (and a < 1006), meaning there are 201 solutions (alternatively, b must be odd
leading to the same result).

– Chinese Remainder Theorem (CRT): Given a set of linear congruences x ⌘ b1 (mod m1), x ⌘ b2
(mod m2), . . . , x ⌘ bn (mod mn), there either exists no solution (due to contradictory things such
as x ⌘ 1 (mod 2), x ⌘ 2 (mod 4)) or there exists a unique r such that x ⌘ r (mod M), where M is
the least common multiple of m1,m2, . . . ,mn.

– Power residues: There are only so many possible residues that can be expressed as a square in some
modulus - for example, there is no n for which n2 ⌘ 2 (mod 3). In a modulus m, we only need
to check 12, 22, . . . , (m � 1)2 (0, of course, is always a residue) - and, in fact, since 1 ⌘ �(m � 1)
(mod m), we only need to check half of these.

– Some excellent moduli to work with when analyzing Diophantines involving squares are 3 and 4 - in
both these moduli, the only quadratic residues are 0 and 1. This immediately tells us, for example,
that x2�y2 ⌘ 2 (mod 4) has no solutions. 8 is also an excellent modulus to use, particularly because
all odd squares are 1 (mod 4). For cubes, checking modulo 9 is usually a good start, since the only
cubic residues are �1, 0, 1.

• Working with squares and other powers

– Suppose ab is a square. Then there exists some k, x, y so that a = kx2, b = ky2. In other words, if a
and b are relatively prime, they must both be squares (otherwise write out their gcd and then apply
this result).

– Similarly, if kab is a square and a, b are relatively prime, either a = kx2, b = y2 or vice versa.

– This is useful for many reasons. For example, if we know 3(a2 � 80)(a2 + 80) is a square where a is
odd, then we know one of a2 � 80, a2 + 80 has to be thrice a perfect square and the other a perfect
square itself. But a2 � 80 ⌘ a2 + 1 (mod 3) can’t be a multiple of 3, so a2 � 80 is the perfect square
- allowing us to write (a� k)(a+ k) = 80 and find solutions that way.

– Of course, though we mainly focus on squares, all this applies to other powers as well - if ab is a
perfect cube and a, b are relatively prime, both a and b must themselves be cubes, and so on.

• Bounding

– Bounding gets a well-deserved bad reputation, but it can be a very useful tool when properly used.
One common usage is to bound some expression between two consecutive squares, thus showing it
cannot itself be a perfect square. For example, n2 < n2 + n < n2 + 2n + 1 = (n + 1)2 (for positive
n), so n2 + n is never a perfect square.

– Similarly, n2 < n2 + n+ 8 < n2 + 2n+ 1 for n > 7 (and n positive), so we only need to check n  7
when finding whether n2+n+8 is a perfect square. In fact, for n = 7, we have n2+n+8 = 64 = 82,
so n2 + n+ 8 is a perfect square only when n = 7.

– On the AIME, we can also use it to reduce our search space when bashing - keep in mind that the
answer is at most three digits! This means that, for example, if we want the largest n such that
2n + 79 is a perfect square and n can be expressed as a di↵erence of consecutive cubes, we “only”
need to check the perfect squares from 92 to 452. If we couple this with some number theoretic
observations, such as n = 3a2 + 3a + 1 =) n ⌘ 1 (mod 3) =) 3 | 2n + 79, we can reduce this
to only check perfect squares that are multiples of 3 - only about 12 numbers to check! This still is
hardly a pretty method, but it can earn you points.

• Euclidean Algorithm and Phi: Denote by (a, b) the greatest common divisor of a and b - i.e. the largest
d such that d | a, d | b.

– The Euclidean Algorithm: We will find (a, b). If a = 0 or b = 0, then the GCD is the nonzero
one, and stop. Otherwise (a, b) = (a, b � a) = (a � b, b) (depending on which of a, b is greater).
Repeating this gives us (a, b) = (a (mod b), b) = (a, b (mod a)). Repeat until termination. For
example, (16, 56) = (16, 56 (mod 16)) = (16, 8) = (16 (mod 8), 8) = (0, 8) =) (16, 56) = 8. If
(a, b) = 1, we say a, b are relatively prime.
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– How many a < n are there for which (a, n) = 1? We go about this using a counting strategy: PIE.

Suppose p divides n - then a = p, 2p, . . . don’t satisfy (a, n) = 1. There are
n

p
� 1 of those. Similarly,

we can do this for all the primes, and account for our overcounting using PIE.

– The phi function: if n = pe11 pe22 . . . pek
k
, we have �(n) = n

✓
1� 1

p1

◆✓
1� 1

p2

◆
. . .

✓
1� 1

pk

◆
. For

example, �(1000) = 1000 · 1
2
· 4
5
= 400.

– Example: For how many 0 < n < 500 is
n

1000� n
in lowest terms? Solution: We need (n, 1000�n) =

1, which by the Euclidean algorithm is equivalent to (n, 1000) = 1. There are �(1000) = 400 such n
less than 1000, exactly half of which are less than 500 (because if k works, so does 1000� k), making
our answer 200.

• Fermat, Euler, and order

– Fermat’s Little Theorem (FLT): ap ⌘ a (mod p), where p is a prime. If p - a, this can be rewritten
as ap�1 ⌘ 1 (mod p). For example, 236 ⌘ 1 (mod 37).

– Euler’s Theorem: a�(n) ⌘ 1 (mod n) if a and n are relatively prime. Note that this is a generalization
of the above.

– When using Euler’s, first try splitting up n into its prime components. For example, it’s usually better
to look at ak (mod 8) and ak (mod 125) than directly looking at ak (mod 1000). We can then back-
construct the remainder modulo 1000 (guaranteed by CRT), and this also has the advantage of being
able to look at even a (normally impossible as (a, 1000) 6= 1).

– The order of a modulo n, orda(n), is the smallest positive k so that ak ⌘ 1 (mod n) - again, this
only makes sense when (a, n) = 1. Important: if ax ⌘ 1 (mod n), then orda(n) | x. For example,
orda(p) | p � 1. Unfortunately, there’s no easy way to find the order - we have to start checking
divisors of �(n) to see if there is a smaller order.

• Inverses and “Fractions”

– Given a modulus m and a nonzero residue a, we denote by a�1 the residue such that aa�1 ⌘ 1
(mod m). Obviously, this doesn’t always exist - there’s only one when (a,m) = 1. Most often, we
only work with inverses with prime moduli, which are guaranteed to have inverses.

– In a modulus p: a+b ⌘ ab(a�1+b�1) (mod p) =) ab�1(a+b) ⌘ a�1+b�1 (mod p); this essentially

means we can pretend we’re working with fractions:
1

a
+

1

b
=

a+ b

ab
(mod p).

– Example: Let p be a prime greater than 5. Show that there exists an n with p | 20n + 15n � 12n.

Solution: We have 20p�1 ⌘ 15p�1 ⌘ 12p�1 ⌘ 1 (mod p), so 20p�3 + 15p�3 � 12p�3 ⌘ 1

202
+

1

152
�

1

122
⌘ 0 (mod p), so n = p� 3 works.

– Make sure you see why we could abuse notation a bit above - 1
202 is really the same as (20�1)2.

• Lifting the Exponent (*)

– First, a definition: the p-adic valuation vp(n) is the highest power of p dividing n. For example,
v3(54) = 3 as 33 | 54, but 34 - 54. One obvious property: vp(ab) = vp(a) + vp(b)

– Now the theorem: Suppose p is an odd prime dividing a� b but neither a nor b. Then vp(an � bn) =
vp(a� b) + vp(n). The proof of this isn’t too complicated at all, but this is a very useful result.

– For example, suppose N is a number consisting of 2015 9s. What is the largest power of 3 dividing
N? Solution: v3(102015 � 1) = v3(2015) + v3(9) = 0 + 2 = 2. Rather straightforward!

– Suppose a1 = 2011 and an = 2012an�1 � 1 for all n > 1. What is the largest power of 2011
dividing a2012? Solution: We have v2011(an) = v2011(2012an�1 �1) = v2011(2012�1)+v2011(an�1) =
1 + v2011(an�1). As a result, since v2011(a1) = 1, we have v2011(a2012) = 2012.

– A warning: Do not try to blindly apply this without first checking that p | a � b and p - a, b. It
is very easy to fall into this trap and be completely wrong - make sure you understand why saying
v3(22014 � 1) = v3(2� 1) + v3(2014) = 0 is not valid (and see if you can figure out how to fix it).

– A second warning: Be very careful about applying this theorem to p = 2! If 4 | a � b then the
theorem works as expected, but otherwise we have to introduce a second version: v2(an � bn) =
v2(a� b) + v2(a+ b) + v2(n)� 1. Of course, a, b are still odd since p - a, b.
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• Zsigmondy’s theorem (*)

– Another useful result about an � bn: there (usually) exists some p dividing an � bn that does not
divide ak � bk for any 1  k  n� 1.

– This doesn’t seem particularly helpful, but it allows us to easily murder some Diophantines: specifi-
cally those in the form an � bn = pe11 pe22 . . . where the pi are fixed. This is because once we find any
small solutions that use up all the primes, we immediately know there are no higher solutions! For
example, take 5k � 1 = 2a. Clearly, k = 1 is a solution. Suppose there were a bigger one, x. Then
there would be some prime p dividing 5x � 1 but not 5k � 1, impossible as the only prime dividing
5x � 1 would be 2.

– Similarly, cases like 2a � 1 = 3 · 5b are trivialized: a = 4 is a solution for which 3, 5 | 2a � 1, as a
result there are no higher solutions.

– There a couple of exceptions to be careful of: if a = 2 and b = 1 (so we’re working with 2n � 1), we
have to manually check n = 6 as 26 � 1 = 63 and 3 | 22 � 1, 7 | 23 � 1. Additionally, if a + b is a
power of two and n = 2, we’d have a2 � b2 = (a � b)(a + b) which fails as a + b is a power of two
(so no new prime) and a � b is the only other smaller n, so no new primes from that factor either.
Fortunately, these are usually both pretty trivial exceptions, and as long as we don’t forget them we
can apply this rather overpowered result.
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6 Geometry

• General

– It’s a geometry problem - why haven’t you drawn a diagram yet?

– Choose your diagram wisely: drawing things that are too close to special cases (e.g. drawing a
triangle that’s very close to right, or one that’s very close to isosceles) might cause you to spend time
trying to prove things that aren’t true - or, more disasterously, accidentally assuming something is
true when it really isn’t!

– When you see a relationship you think might be true, such as two lines being perpendicular or two
similar triangles, a good test is to draw a completely di↵erent diagram and see if it still looks true.
If you can reproduce the same result with more than one di↵erent diagram, the chances of it being
true go up significantly.

– Don’t just sit and stare! The solution isn’t going to pop up magically. Assign variables to angles
or lengths, draw auxiliary lines, draw another diagram and see what sticks, even jump into using
coordinates - but the worst thing you can do is sit around for fifteen minutes waiting for a flash of
inspiration. Yes, you sometimes need to just look and analyze your diagram, but if you’ve been doing
that for more than 3 minutes or so it’s time to try something new.

– These next two are true for all problems, but especially for Geometry: if you’re stuck, look back at
the problem and ask yourself what information you haven’t used yet?

– Don’t be afraid to work backwards! If you see something you can’t quite figure out how to prove,
start with what you’d like to be true and see if you can work backwards to what you know.

• Parallel lines and angles - suppose the line AB is parallel to the line CD, and E,F lie on AB,CD
respectively.

– Know the basics: \AEF = \DFE and \BEF = \CFE.

– There are 180� in a straight angle (i.e. a line), and by the above this is also the sum of the angles in
a triangle.

– Vertical angles are equal - if AB and CD intersect at E, we have \AEC = \BED and \AED =
\BEC.

• Similarity and Congruency

– Two triangles are similar if they share the same angles; since the sum of the angles in a triangle
is constant, it su�ces to find two equal angle pairs. Equivalent, two triangles ABC and DEF are

similar if
AB

DE
=

BC

EF
=

CA

FD
; determining similarity by either condition lets you conclude the other.

– Two triangles are congruent by SSS (their sides have the same length), SAS (two sides and the angle
they form are equal), or AAS (two angles and some side are equal). Note that SSA (two sides and
an a di↵erent angle) could specify one of two di↵erent triangles.

– Parallel lines almost always result in some similar triangles - be on the lookout for them. In fact,
similar triangles are so useful that we often draw in parallel lines specifically to create them.

– Also be on the lookout for right angles - they make it much easier to find similar triangles.

• Area/Perimeter and Volume/Surface area formulas

– The area of a rectangle is `w, and its perimeter is 2(`+ w). A special case is the square, which has
area s2 and perimeter 4s.

– The area of a parallelogram is bh, the area of a trapezoid is
h(b1 + b2)

2
, and the area of a rhombus

is
d1d2
2

.

– The area of a circle is ⇡r2, and its circumference is 2⇡r. The area of an ellipse is ⇡ab (the perimeter
is not usually reasonable) where a, b are the length of the axes - note that a circle is a special case
where a = b = r.

– The volume of a sphere is
4

3
⇡r3, and its surface area is 4⇡r2.

– The volume of a cone or pyramid is
bh

3
, where b denotes the area of its base. The surface area of

a cone is ⇡rs + ⇡r2 where s is the slant height - the important point to rederive this is that the
circumerence of the lateral surface area if 2⇡r, because it’s also the circumference of the base. The
area of a cylinder or prism is bh. The surface area of a cylinder is 2⇡r2 + 2⇡rh.
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• Triangle area formulas

– All of these are useful under various circumstances. The most basic is
bh

2
where h is the altitude to

the base b.

– Heron’s: [ABC] =
p

s(s� a)(s� b)(s� c), where s =
a+ b+ c

2
.

– Trig: [ABC] =
1

2
ab sinC =

1

2
ac sinB =

1

2
bc sinA. Note the corollary here: if D lies on AB and E

on AC, then
[ADE]

[ABC]
=

AD

DB
· AE
EC

.

– Using circumradius: [ABC] =
abc

4R
.

– Using inradius: [ABC] = sr, where s =
a+ b+ c

2
.

– Using coordinates: If the coordinates are (x1, y1), (x2, y2), (x3, y3), then the area is

|x1y2 + x2y3 + x3y1 � y1x2 � y2x3 � y3x1|
2

– The above, the Shoelace theorem, extends to higher-order polygons as well, so long as we keep the
coordinates in [counter]clockwise order.

• Useful triangle results: ABC is a triangle with a = BC, b = CA, c = AB.

– In a right triangle, a2 = b2 + c2 (Pythagorean triples). Common Pythagorean triples include

(3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25),

✓
n,

n2 � 1

2
,
n2 + 1

2

◆
for odd n, and their multiples.

– Median splitting: The 3 medians split [ABC] into six triangles of equal area. Additionally, the
centroid G satisfies AG = 2GMa, BG = 2GMb, CG = 2GMc where Ma,Mb,Mc are the midpoints.

– Angle bisectors: The 3 angle bisectors meet at the incenter. Additionally, if D lies on BC such that

AD is the angle bisector, we have
AB

AC
=

BD

CD
.

– Altitudes: The altitudes meet at the orthocenter, H. H has the useful property that, when reflected
over any of the sides, it lies on the circumcircle of ABC.

– Cirumcenter: The 3 perpendicular bisectors intersect at the orthocenter, O. O is, predictably, the
center of the circumcircle.

– Area ratios: If D lies on BC, then
[ABC]

[ACD]
=

BC

CD
(since the two triangles share the same height).

– Law of Cosines: c2 = a2 + b2 � 2ab cosC, b2 = a2 + c2 � 2ac cosB, a2 = b2 + c2 � 2bc cosA

– (Extended) Law of Sines:
a

sinA
=

b

sinB
=

c

sinC
= 2R

– Stewarts: Suppose X lies on BC and AX = p,BX = m,CX = n. Then man+ dad = bmb+ cnc (“a
man and his dad put a bomb in the sink”).

– Sometimes useful:
p
R(R� 2r) is the distance between the incenter and circumcenter; as a corollary,

R � 2r.

– One trick that’s come up a bit recently:
1

r
=

1

hA

+
1

hB

+
1

hC

, where hA, hB , hC are the lengths of

the altitudes and r is the inradius.

• Cyclic quadrilaterals

– If A,B,C lie on a circle, then \ABC is half the arc AC. In other words, an inscribed angle is half
its subtended angle.

– A,B,C,D are cyclic if they all lie on a single circle. Cyclic quadrilaterals have a ton of useful
properties:

– \ABC + \CDA = \BCD + \DAB = 180�.

– \ABD = \ACD; analogously \BCA = \BDA,\CDB = \CAB,\DAC = \DBC. These are
due to subtending the same arc.

– Power of a point: if AC intersects BD at E, then AE ·EC = BE ·ED (note this doesn’t rely on the
ordering of A,B,C,D - E might be outside the circle and A = C is even possible).
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– Ptolemy’s theorem: AB · CD +BC ·DA = AC ·BD.

– Area: The area of a cyclic quadrilateral is
p
(s� a)(s� b)(s� c)(s� d) where s =

a+ b+ c+ d

2
-

note what happens when a = 0!

– Simson’s theorem: Let ABC be a triangle and D some point. Denote by X,Y, Z the feet of the
altitudes from D to AB,BC,CA respectively. Then X,Y, Z are collinear if and only if D lies on the
circumcircle of ABC.

– Cyclic quadrilaterals are like similar triangles on steroids: we get a ton of angle equalities and even
some length relationships. If we manage to find one, it’s almost always a sign that we’re on the right
track.

– Not entirely relevant: A quadrilateral has an inscribed circle if and only if AB + CD = BC +DA
(due to equal tangents).

• Collinearity and Concurrency

– Ceva: If X lies on BC, Y lies on CA, and Z lies on AB, then AX,BY,CZ are concurrent if and

only if
AZ

ZB
· BX

XC
· CY

Y A
= 1.

– Trig Ceva: AX,BY,CZ are concurrent if and only if
sinBAX

sinCAX
· sinACZ

sinBCZ
· sinCBY

sinABY
= 1.

– If D lies on BC, E lies on CA, and F lies on AB, then D,E, F are collinear if and only if
AF

BF
· BD

CD
·

CE

AE
= 1 (or -1, should you be comfortable with directed segments).

• 3-D geometry

– This section is short, despite the subject’s high importance, because there’s very few formulae and
strategies for 3-D geometry - the main point is finding the right 2-D cross-sections to take.

– Some common configurations: A cube inscribed in a cone - take the cross section through two opposite
face diagonals of the cube. The 2-D analogue is then a rectangle (NOT a square!) inscribed in a
triangle; four externally tangent spheres - consider the pyramid formed by joining the centers and find
its centroid; a sphere inscribed in a square pyramid - like before, consider a cross section through the
vertex and a diagonal of the base, which gives a 2-D analogue of a semicircle inscribed in a triangle.

– In general, these questions require a lot of practice and intuition development, and there’s no general
strategy that applies to this class.

• Coordinates and special cases

– We can often fraud geometry problems by assigning the appropriate coordinate system and bashing
away.

– Some important results: The slope between the points (a, b) and (c, d) is
d� b

c� a
; this gives us equations

of lines. The distance between the two is
p
(d� b)2 + (c� a)2. The slopes of perpendicular lines

multiply to -1, and the slopes of parallel lines are equal.

– The distance from (p, q) to a line ax+ by + c = 0 is
|ap+ bq + c|p

a2 + b2
.

– The general coordinate form for a circle is (x � h)2 + (y � k)2 = r2 - this is centered at (h, k) and
has radius r. That said, if you are finding yourself needing to use circles in coordinate bashes, you
are probably going down the wrong path.

– Coordinates are generally good options when there are a lot of lines involved - like mentioned above,
circles don’t tend to play nicely with coordinates. Also very important is the choice of the origin and
how to orient the coordinate axes. We almost always want a base of a triangle to lie on the x-axis,
and usually want the origin to be the foot of the altitude from the other point. This makes it work
out very nicely with 13-14-15 triangles (or others that are combinations of right triangles).

– Coordinates also work out nicely with right angles - right angles mean we can place the coordinate
axes along two bases, which makes it much more likely to be a clean solution. Therefore, whenever
we’re coordinate bashing on an arbitrary triangle, we almost always want to assume it’s right.

– In fact, when we’re talking about arbitrary triangles, we can often assume they’re special. This
means that if the question is asking about something that doesn’t depend on how the triangle looks,
we can make life easier on ourselves by assuming it’s right, or equilateral, or whatever happens to be
convenient.
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– This also applies to higher-order polygons: we can often assume a quadrilateral is a rectangle, or my
personal favorite: that a parallelogram is a line. Be very careful trying to do this when lengths are
given in the problem however - it may be the case that the polygon is implicitly determined. Don’t
try to assume a 13-14-15 triangle is right!

• Complex numbers in Geometry

– We first define what we actually mean: the complex number a + bi, in the complex plane, is the
Cartesian analogue of the point (a, b). The modulus of z is |z| =

p
a2 + b2, or the distance to the

origin.

– Note that complex numbers are very similar to vectors - indeed, the same “parallelogram rule” applies
to summing two points, among other things.

– Rotating about the origin ✓ clockwise takes z to zei✓. Note that when ✓ =
2⇡

k
this looks suspiciously

like roots of unity - and indeed, this is one of the biggest tip-o↵s to use complex numbers. A regular
n-side polygon in the complex plane can be placed with vertices at 1,!,!2, . . . ,!n�1 where ! is an
nth root of unity.

– Incidentally, note that this immediately proves cos 2� + cos 4� + . . . + cos 360� from before - these
correspond to the x-coordinates of the vertices of a polygon whose centroid is 0, so the sum is
immediately 0.

– Another useful result: w and z are perpendicular if and only if
z

w
is pure imaginary (this refers to the

lines from 0 to w and from 0 to z). Analogously, the lines from a to b and c to d are perpendicular

if and only if
d� c

b� a
is pure imaginary.

– An application: A square in the coordinate plane has vertices whose y coordinates are 0, 1, 4, and
5. What is the area of the square? Solution: Place the square in the complex place. We want the
origin to be the center, and we’d like to work with integers, so scale everything up by a factor of 2
and then shift it 5 units downward - this makes the square have y-coordinates �5,�3, 3, 5. Suppose
one of the points is a+ 5i. Then (a+ 5i)e

⇡i
2 = (a+ 5i)i = �5 + ai is the result of rotating the point

90 degrees clockwise about the origin, which coincides with the vertex on y = 3 (or possibly y = �3,
but the di↵erence is academic) - this implies that a = 3. As a result, the magnitude of 3+ 5i is

p
34,

so the diagonal of the square is 2
p
34, making the area of the original square (remember we scaled

up by a factor of two at the beginning) 17 . Note how little work we had to do!

– Hints to use complex geometry: Regular polygons work excellently with complex numbers, because
(if we can make the origin the centroid), multiplying the points by ! results in the same polygon.
Note how we did this in the previous problem, multiplying by a 4th root of unity (i). Any sort of
rotation also suggests using complex geometry, since this is very easy to do using complex geometry.
Finally, points on a circle suggest making the origin the center of that circle, since this again results
in a rotational analogue. Summarizing: Lines - use coordinates, Circles - use complex numbers.
Remember that we almost always want the origin to be the center of whatever we’re considering,
usually a regular polygon.

• Radical axes (*)

– Define the power of a point P with respect to a circle O, f(P,O), as follows: draw an arbitrary line
through P that intersects O at the points A,B (not necessarily distinct) - then f(P,O) = PA · PB.
Define the radical axis of two circles O1 and O2 to be the set of points P satisfying f(P,O1) =
f(P,O2).

– The radical axis theorem: the radical axis is a line. This is most commonly used with two circles
intersecting at points A and B - then the radical axis is AB (as the powers from A and B are 0
to both circles). This implies a couple of things: If we have another point C whose powers to both
circles are equal, then A,B,C are collinear. Conversely, if C lies on AB, the powers from C to the
two circles are equal.

– One important configuration: If ` is the external tangent of two circles that intersect at A and B,
and is tangent at T1, T2, then AB intersects ` at the midpoint of T1T2.

– The radical center: Given 3 circles O1, O2, O3, the 3 radical axes `1, `2, `3 concur at the radical
center T . This is primarily useful for showing 3 lines intersect. There is one potential pitfall to
watch out for: If the centers of O1, O2, O3 are collinear, the 3 radical axes are actually all parallel
(and thus intersect at the point at infinity, not useful for most purposes). Fortunately, this is a rather
trivial case, but it has tripped up many a 2009 USAMO contestant.
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• Ratio lemma and Symmedians (*)

– Ratio lemma: LetD be a point on BC. Then
AB

sin\BDA
=

BD

sin\BAD
and

AC

sin\CDA
=

CD

sin\CAD
,

so
AB

BD
· sin\BAD =

AC

CD
· sin\CAD, hence

AB

AC
· sin\BAD

sin\CAD
=

BD

CD
.

– The isogonal conjugate of a point P is the intersection of AP,BP,CP reflected over the A-angle
bisector, B-angle bisector, and C-angle bisector, respectively.

– The circumcenter and orthocenter are isogonal conjugates, and the incenter is its own isogonal con-
jugate.

– The A-symmedian is the reflection of the A-median over the A-angle bisector.

– For any point X on the A-symmedian,
d(X,AB)

d(X,AC)
=

AB

BC
.

– For any point X on the A-symmedian,
XB

XC
=

AB2

AC2
.

– Let D lie on AB and E lie on AC such that 4ADE ⇠ 4ACB. Then the midpoint of DE lies on
the A-symmedian.

– An illustrative configuration: Suppose ACUV,ABST are squares erected on the sides of ABC di-
rected outside of ABC. Then the circumcenter of ATV lies on the A-symmedian.

– Symmedians are not generally useful in computational problems by themselves (they’re more for
olympiad-level problems), but there have been a few AIME/AIME-esque problems lately that essen-
tially take a known symmedian-configuration and assign numbers to them. As such they’re worth
noting, if only briefly.


