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1. (a) Since (x+ 1) + (x+ 2) + (x+ 3) = 8 + 9 + 10, then 3x+ 6 = 27 or 3x = 21 and so x = 7.

(b) Since
√

25 +
√
x = 6, then squaring both sides gives 25 +

√
x = 36 or

√
x = 11.

Since
√
x = 11, then squaring both sides again, we obtain x = 112 = 121.

Checking,
√

25 +
√

121 =
√

25 + 11 =
√

36 = 6, as required.

(c) Since (a, 2) is the point of intersection of the lines with equations y = 2x−4 and y = x+k,
then the coordinates of this point must satisfy both equations.
Using the first equation, 2 = 2a− 4 or 2a = 6 or a = 3.
Since the coordinates of the point (3, 2) satisfy the equation y = x+ k, then 2 = 3 + k or
k = −1.

2. (a) Since the side length of the original square is 3 and an equilateral triangle of side length 1
is removed from the middle of each side, then each of the two remaining pieces of each
side of the square has length 1.
Also, each of the two sides of each of the equilateral triangles that are shown has length 1.

1

1 1

1

Therefore, each of the 16 line segments in the figure has length 1, and so the perimeter of
the figure is 16.

(b) Since DC = DB, then 4CDB is isosceles and ∠DBC = ∠DCB = 15◦.
Thus, ∠CDB = 180◦ − ∠DBC − ∠DCB = 150◦.
Since the angles around a point add to 360◦, then

∠ADC = 360◦ − ∠ADB − ∠CDB = 360◦ − 130◦ − 150◦ = 80◦ .

(c) By the Pythagorean Theorem in4EAD, we have EA2+AD2 = ED2 or 122+AD2 = 132,
and so AD =

√
169− 144 = 5, since AD > 0.

By the Pythagorean Theorem in 4ACD, we have AC2 + CD2 = AD2 or AC2 + 42 = 52,
and so AC =

√
25− 16 = 3, since AC > 0.

(We could also have determined the lengths of AD and AC by recognizing 3-4-5 and
5-12-13 right-angled triangles.)
By the Pythagorean Theorem in 4ABC, we have AB2 + BC2 = AC2 or AB2 + 22 = 32,
and so AB =

√
9− 4 =

√
5, since AB > 0.

3. (a) Solution 1

Since we want to make 15 − y

x
as large as possible, then we want to subtract as little as

possible from 15.

In other words, we want to make
y

x
as small as possible.

To make a fraction with positive numerator and denominator as small as possible, we
make the numerator as small as possible and the denominator as large as possible.
Since 2 ≤ x ≤ 5 and 10 ≤ y ≤ 20, then we make x = 5 and y = 10.

Therefore, the maximum value of 15− y

x
is 15− 10

5
= 13.
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Solution 2
Since y is positive and 2 ≤ x ≤ 5, then 15 − y

x
≤ 15 − y

5
for any x with 2 ≤ x ≤ 5 and

positive y.

Since 10 ≤ y ≤ 20, then 15− y

5
≤ 15− 10

5
for any y with 10 ≤ y ≤ 20.

Therefore, for any x and y in these ranges, 15− y

x
≤ 15− 10

5
= 13, and so the maximum

possible value is 13 (which occurs when x = 5 and y = 10).

(b) Solution 1
First, we add the two given equations to obtain

(f(x) + g(x)) + (f(x)− g(x)) = (3x+ 5) + (5x+ 7)

or 2f(x) = 8x+ 12 which gives f(x) = 4x+ 6.
Since f(x) + g(x) = 3x+ 5, then g(x) = 3x+ 5− f(x) = 3x+ 5− (4x+ 6) = −x− 1.
(We could also find g(x) by subtracting the two given equations or by using the second of
the given equations.)
Since f(x) = 4x+ 6, then f(2) = 14.
Since g(x) = −x− 1, then g(2) = −3.
Therefore, 2f(2)g(2) = 2× 14× (−3) = −84.

Solution 2
Since the two given equations are true for all values of x, then we can substitute x = 2 to
obtain

f(2) + g(2) = 11

f(2)− g(2) = 17

Next, we add these two equations to obtain 2f(2) = 28 or f(2) = 14.
Since f(2) + g(2) = 11, then g(2) = 11− f(2) = 11− 14 = −3.
(We could also find g(2) by subtracting the two equations above or by using the second
of these equations.)
Therefore, 2f(2)g(2) = 2× 14× (−3) = −84.

4. (a) We consider choosing the three numbers all at once.
We list the possible sets of three numbers that can be chosen:

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

We have listed each in increasing order because once the numbers are chosen, we arrange
them in increasing order.
There are 10 sets of three numbers that can be chosen.
Of these 10, the 4 sequences 1, 2, 3 and 1, 3, 5 and 2, 3, 4 and 3, 4, 5 are arithmetic sequences.
Therefore, the probability that the resulting sequence is an arithmetic sequence is 4

10
or 2

5
.
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(b) Solution 1
Join B to D.

AB

C

D

60

Consider 4CBD.
Since CB = CD, then ∠CBD = ∠CDB = 1

2
(180◦ − ∠BCD) = 1

2
(180◦ − 60◦) = 60◦.

Therefore, 4BCD is equilateral, and so BD = BC = CD = 6.
Consider 4DBA.
Note that ∠DBA = 90◦ − ∠CBD = 90◦ − 60◦ = 30◦.
Since BD = BA = 6, then ∠BDA = ∠BAD = 1

2
(180◦ − ∠DBA) = 1

2
(180◦ − 30◦) = 75◦.

We calculate the length of AD.

Method 1

By the Sine Law in 4DBA, we have
AD

sin(∠DBA)
=

BA

sin(∠BDA)
.

Therefore, AD =
6 sin(30◦)

sin(75◦)
=

6× 1
2

sin(75◦)
=

3

sin(75◦)
.

Method 2
If we drop a perpendicular from B to P on AD, then P is the midpoint of AD since
4BDA is isosceles. Thus, AD = 2AP .
Also, BP bisects ∠DBA, so ∠ABP = 15◦.
Now, AP = BA sin(∠ABP ) = 6 sin(15◦).
Therefore, AD = 2AP = 12 sin(15◦).

Method 3
By the Cosine Law in 4DBA,

AD2 = AB2 +BD2 − 2(AB)(BD) cos(∠ABD)

= 62 + 62 − 2(6)(6) cos(30◦)

= 72− 72(
√
3
2

)

= 72− 36
√

3

Therefore, AD =
√

36(2−
√

3) = 6
√

2−
√

3 since AD > 0.
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Solution 2
Drop perpendiculars from D to Q on BC and from D to R on BA.

AB

C

D

60

Q

R

Then CQ = CD cos(∠DCQ) = 6 cos(60◦) = 6× 1
2

= 3.

Also, DQ = CD sin(∠DCQ) = 6 sin(60◦) = 6×
√
3
2

= 3
√

3.
Since BC = 6, then BQ = BC − CQ = 6− 3 = 3.
Now quadrilateral BQDR has three right angles, so it must have a fourth right angle and
so must be a rectangle.
Thus, RD = BQ = 3 and RB = DQ = 3

√
3.

Since AB = 6, then AR = AB −RB = 6− 3
√

3.
Since 4ARD is right-angled at R, then using the Pythagorean Theorem and the fact that
AD > 0, we obtain

AD =
√
RD2 + AR2 =

√
32 + (6− 3

√
3)2 =

√
9 + 36− 36

√
3 + 27 =

√
72− 36

√
3

which we can rewrite as AD =
√

36(2−
√

3) = 6
√

2−
√

3.

5. (a) Let n be the original number and N be the number when the digits are reversed. Since
we are looking for the largest value of n, we assume that n > 0.
Since we want N to be 75% larger than n, then N should be 175% of n, or N = 7

4
n.

Suppose that the tens digit of n is a and the units digit of n is b. Then n = 10a+ b.
Also, the tens digit of N is b and the units digit of N is a, so N = 10b+ a.
We want 10b + a = 7

4
(10a + b) or 4(10b + a) = 7(10a + b) or 40b + 4a = 70a + 7b or

33b = 66a, and so b = 2a.
This tells us that that any two-digit number n = 10a + b with b = 2a has the required
property.
Since both a and b are digits then b < 10 and so a < 5, which means that the possible
values of n are 12, 24, 36, and 48.
The largest of these numbers is 48.

(b) We “complete the rectangle” by drawing a horizontal line through C which meets the
y-axis at P and the vertical line through B at Q.

y

x
O

C (k, 5)

B (4, 0)

A (0, 3)

P Q
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Since C has y-coordinate 5, then P has y-coordinate 5; thus the coordinates of P are
(0, 5).
Since B has x-coordinate 4, then Q has x-coordinate 4.
Since C has y-coordinate 5, then Q has y-coordinate 5.
Therefore, the coordinates of Q are (4, 5), and so rectangle OPQB is 4 by 5 and so has
area 4× 5 = 20.
Now rectangle OPQB is made up of four smaller triangles, and so the sum of the areas of
these triangles must be 20.
Let us examine each of these triangles:

• 4ABC has area 8 (given information)

• 4AOB is right-angled at O, has height AO = 3 and base OB = 4, and so has area
1
2
× 4× 3 = 6.

• 4APC is right-angled at P , has height AP = 5 − 3 = 2 and base PC = k − 0 = k,
and so has area 1

2
× k × 2 = k.

• 4CQB is right-angled at Q, has height QB = 5 − 0 = 5 and base CQ = 4 − k, and
so has area 1

2
× (4− k)× 5 = 10− 5

2
k.

Since the sum of the areas of these triangles is 20, then 8 + 6 + k+ 10− 5
2
k = 20 or 4 = 3

2
k

and so k = 8
3
.

6. (a) Solution 1
Suppose that the distance from point A to point B is d km.
Suppose also that rc is the speed at which Serge travels while not paddling (i.e. being
carried by just the current), that rp is the speed at which Serge travels with no current
(i.e. just from his paddling), and rp+c his speed when being moved by both his paddling
and the current.
It takes Serge 18 minutes to travel from A to B while paddling with the current.

Thus, rp+c =
d

18
km/min.

It takes Serge 30 minutes to travel from A to B with just the current.

Thus, rc =
d

30
km/min.

But rp = rp+c − rc =
d

18
− d

30
=

5d

90
− 3d

90
=

2d

90
=

d

45
km/min.

Since Serge can paddle the d km from A to B at a speed of
d

45
km/min, then it takes him

45 minutes to paddle from A to B with no current.

Solution 2
Suppose that the distance from point A to point B is d km, the speed of the current of
the river is r km/h, and the speed that Serge can paddle is s km/h.

Since the current can carry Serge from A to B in 30 minutes (or
1

2
h), then

d

r
=

1

2
.

When Serge paddles with the current, his speed equals his paddling speed plus the speed
of the current, or (s+ r) km/h.

Since Serge can paddle with the current from A to B in 18 minutes (or
3

10
h), then

d

r + s
=

3

10
.

The time to paddle from A to B with no current would be
d

s
h.
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Since
d

r
=

1

2
, then

r

d
= 2.

Since
d

r + s
=

3

10
, then

r + s

d
=

10

3
.

Therefore,
s

d
=
r + s

d
− r

d
=

10

3
− 2 =

4

3
.

Thus,
d

s
=

3

4
, and so it would take Serge

3

4
of an hour, or 45 minutes, to paddle from A

to B with no current.

Solution 3
Suppose that the distance from point A to point B is d km, the speed of the current of
the river is r km/h, and the speed that Serge can paddle is s km/h.

Since the current can carry Serge from A to B in 30 minutes (or
1

2
h), then

d

r
=

1

2
or

d = 1
2
r.

When Serge paddles with the current, his speed equals his paddling speed plus the speed
of the current, or (s+ r) km/h.

Since Serge can paddle with the current from A to B in 18 minutes (or
3

10
h), then

d

r + s
=

3

10
or d = 3

10
(r + s).

Since d = 1
2
r and d = 3

10
(r + s), then 1

2
r = 3

10
(r + s) or 5r = 3r + 3s and so s = 2

3
r.

To travel from A to B with no current, the time in hours that it takes is
d

s
=

1
2
r

2
3
r

=
3

4
, or

45 minutes.

(b) First, we note that a 6= 0. (If a = 0, then the “parabola” y = a(x− 2)(x− 6) is actually
the horizontal line y = 0 which intersects the square all along OR.)
Second, we note that, regardless of the value of a 6= 0, the parabola has x-intercepts 2 and
6, and so intersects the x-axis at (2, 0) and (6, 0), which we call K(2, 0) and L(6, 0). This
gives KL = 4.
Third, we note that since the x-intercepts of the parabola are 2 and 6, then the axis of
symmetry of the parabola has equation x = 1

2
(2 + 6) = 4.

Since the axis of symmetry of the parabola is a vertical line of symmetry, then if the
parabola intersects the two vertical sides of the square, it will intersect these at the same
height, and if the parabola intersects the top side of the square, it will intersect it at two
points that are symmetrical about the vertical line x = 4.
Fourth, we recall that a trapezoid with parallel sides of lengths a and b and height h has
area 1

2
h(a+ b).

We now examine three cases.



2011 Euclid Contest Solutions Page 8

Case 1: a < 0
Here, the parabola opens downwards.
Since the parabola intersects the square at four points, it must intersect PQ at points
M and N . (The parabola cannot intersect the vertical sides of the square since it gets
“narrower” towards the vertex.)

y

x

P

O R

Q (8, 8)

x = 4

K L

MN

Since the parabola opens downwards, then MN < KL = 4.
Since the height of the trapezoid equals the height of the square (or 8), then the area of
the trapezoid is 1

2
h(KL+MN) which is less than 1

2
(8)(4 + 4) = 32.

But the area of the trapezoid must be 36, so this case is not possible.

Case 2: a > 0; M and N on PQ
We have the following configuration:

y

x

P

O R

Q (8, 8)

x = 4

K L

MN

Here, the height of the trapezoid is 8, KL = 4, and M and N are symmetric about x = 4.
Since the area of the trapezoid is 36, then 1

2
h(KL+MN) = 36 or 1

2
(8)(4 +MN) = 36 or

4 +MN = 9 or MN = 5.
Thus, M and N are each 5

2
units from x = 4, and so N has coordinates (3

2
, 8).

Since this point lies on the parabola with equation y = a(x − 2)(x − 6), then
8 = a(3

2
− 2)(3

2
− 6) or 8 = a(−1

2
)(−9

2
) or 8 = 9

4
a or a = 32

9
.
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Case 3: a > 0; M and N on QR and PO
We have the following configuration:

y

x

P

O R

x = 4

K L

MN

Q

Here, KL = 4, MN = 8, and M and N have the same y-coordinate.
Since the area of the trapezoid is 36, then 1

2
h(KL + MN) = 36 or 1

2
h(4 + 8) = 36 or

6h = 36 or h = 6.
Thus, N has coordinates (0, 6).
Since this point lies on the parabola with equation y = a(x − 2)(x − 6), then
6 = a(0− 2)(0− 6) or 6 = 12a or a = 1

2
.

Therefore, the possible values of a are 32
9

and 1
2
.

7. (a) Solution 1
Consider a population of 100 people, each of whom is 75 years old and who behave ac-
cording to the probabilities given in the question.
Each of the original 100 people has a 50% chance of living at least another 10 years, so
there will be 50%× 100 = 50 of these people alive at age 85.
Each of the original 100 people has a 20% chance of living at least another 15 years, so
there will be 20%× 100 = 20 of these people alive at age 90.
Since there is a 25% (or 1

4
) chance that an 80 year old person will live at least another 10

years (that is, to age 90), then there should be 4 times as many of these people alive at
age 80 than at age 90.
Since there are 20 people alive at age 90, then there are 4 × 20 = 80 of the original 100
people alive at age 80.
In summary, of the initial 100 people of age 75, there are 80 alive at age 80, 50 alive at
age 85, and 20 people alive at age 90.
Because 50 of the 80 people alive at age 80 are still alive at age 85, then the probability
that an 80 year old person will live at least 5 more years (that is, to age 85) is 50

80
= 5

8
, or

62.5%.

Solution 2
Suppose that the probability that a 75 year old person lives to 80 is p, the probability
that an 80 year old person lives to 85 is q, and the probability that an 85 year old person
lives to 90 is r.
We want to the determine the value of q.
For a 75 year old person to live at least another 10 years, they must live another 5 years
(to age 80) and then another 5 years (to age 85). The probability of this is equal to pq.
We are told in the question that this is equal to 50% or 0.5.
Therefore, pq = 0.5.
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For a 75 year old person to live at least another 15 years, they must live another 5 years
(to age 80), then another 5 years (to age 85), and then another 5 years (to age 90). The
probability of this is equal to pqr. We are told in the question that this is equal to 20%
or 0.2.
Therefore, pqr = 0.2
Similarly, since the probability that an 80 year old person will live another 10 years is
25%, then qr = 0.25.

Since pqr = 0.2 and pq = 0.5, then r =
pqr

pq
=

0.2

0.5
= 0.4.

Since qr = 0.25 and r = 0.4, then q =
qr

r
=

0.25

0.4
= 0.625.

Therefore, the probability that an 80 year old man will live at least another 5 years is
0.625, or 62.5%.

(b) Using logarithm rules, the given equation is equivalent to 22 log10 x = 3(2 · 2log10 x) + 16 or
(2log10 x)2 = 6 · 2log10 x + 16.
Set u = 2log10 x. Then the equation becomes u2 = 6u+ 16 or u2 − 6u− 16 = 0.
Factoring, we obtain (u− 8)(u+ 2) = 0 and so u = 8 or u = −2.
Since 2a > 0 for any real number a, then u > 0 and so we can reject the possibility that
u = −2.
Thus, u = 2log10 x = 8 which means that log10 x = 3.
Therefore, x = 1000.

8. (a) First, we determine the first entry in the 50th row.
Since the first column is an arithmetic sequence with common difference 3, then the 50th
entry in the first column (the first entry in the 50th row) is 4 + 49(3) = 4 + 147 = 151.
Second, we determine the common difference in the 50th row by determining the second
entry in the 50th row.
Since the second column is an arithmetic sequence with common difference 5, then the
50th entry in the second column (that is, the second entry in the 50th row) is 7 + 49(5)
or 7 + 245 = 252.
Therefore, the common difference in the 50th row must be 252− 151 = 101.
Thus, the 40th entry in the 50th row (that is, the number in the 50th row and the 40th
column) is 151 + 39(101) = 151 + 3939 = 4090.

(b) We follow the same procedure as in (a).
First, we determine the first entry in the Rth row.
Since the first column is an arithmetic sequence with common difference 3, then the Rth
entry in the first column (that is, the first entry in the Rth row) is 4 + (R − 1)(3) or
4 + 3R− 3 = 3R + 1.
Second, we determine the common difference in the Rth row by determining the second
entry in the Rth row.
Since the second column is an arithmetic sequence with common difference 5, then the
Rth entry in the second column (that is, the second entry in the Rth row) is 7+(R−1)(5)
or 7 + 5R− 5 = 5R + 2.
Therefore, the common difference in the Rth row must be (5R+ 2)− (3R+ 1) = 2R+ 1.
Thus, the Cth entry in the Rth row (that is, the number in the Rth row and the Cth
column) is

3R + 1 + (C − 1)(2R + 1) = 3R + 1 + 2RC + C − 2R− 1 = 2RC +R + C
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(c) Suppose that N is an entry in the table, say in the Rth row and Cth column.
From (b), then N = 2RC +R + C and so 2N + 1 = 4RC + 2R + 2C + 1.
Now 4RC + 2R + 2C + 1 = 2R(2C + 1) + 2C + 1 = (2R + 1)(2C + 1).
Since R and C are integers with R ≥ 1 and C ≥ 1, then 2R + 1 and 2C + 1 are each
integers that are at least 3.
Therefore, 2N + 1 = (2R + 1)(2C + 1) must be composite, since it is the product of two
integers that are each greater than 1.

9. (a) If n = 2011, then 8n− 7 = 16081 and so
√

8n− 7 ≈ 126.81.

Thus,
1 +
√

8n− 7

2
≈ 1 + 126.81

2
≈ 63.9.

Therefore, g(2011) = 2(2011)+

⌊
1 +

√
8(2011)− 7

2

⌋
= 4022+b63.9c = 4022+63 = 4085.

(b) To determine a value of n for which f(n) = 100, we need to solve the equation

2n−
⌊

1 +
√

8n− 7

2

⌋
= 100 (∗)

We first solve the equation

2x− 1 +
√

8x− 7

2
= 100 (∗∗)

because the left sides of (∗) and (∗∗) do not differ by much and so the solutions are likely
close together. We will try integers n in (∗) that are close to the solutions to (∗∗).
Manipulating (∗∗), we obtain

4x− (1 +
√

8x− 7) = 200

4x− 201 =
√

8x− 7

(4x− 201)2 = 8x− 7

16x2 − 1608x+ 40401 = 8x− 7

16x2 − 1616x+ 40408 = 0

2x2 − 202x+ 5051 = 0

By the quadratic formula,

x =
202±

√
2022 − 4(2)(5051)

2(2)
=

202±
√

396

4
=

101±
√

99

2

and so x ≈ 55.47 or x ≈ 45.53.
We try n = 55, which is close to 55.47:

f(55) = 2(55)−

⌊
1 +

√
8(55)− 7

2

⌋
= 110−

⌊
1 +
√

433

2

⌋

Since
√

433 ≈ 20.8, then
1 +
√

433

2
≈ 10.9, which gives

⌊
1 +
√

433

2

⌋
= 10.

Thus, f(55) = 110− 10 = 100.
Therefore, a value of n for which f(n) = 100 is n = 55.
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(c) We want to show that each positive integer m is in the range of f or the range of g, but
not both.
To do this, we first try to better understand the “complicated” term of each of the func-
tions – that is, the term involving the greatest integer function.
In particular, we start with a positive integer k ≥ 1 and try to determine the positive

integers n that give

⌊
1 +
√

8n− 7

2

⌋
= k.

By definition of the greatest integer function, the equation

⌊
1 +
√

8n− 7

2

⌋
= k is equiv-

alent to the inequality k ≤ 1 +
√

8n− 7

2
< k + 1, from which we obtain the following set

of equivalent inequalities

2k ≤ 1 +
√

8n− 7 < 2k + 2
2k − 1 ≤

√
8n− 7 < 2k + 1

4k2 − 4k + 1 ≤ 8n− 7 < 4k2 + 4k + 1
4k2 − 4k + 8 ≤ 8n < 4k2 + 4k + 8
1
2
(k2 − k) + 1 ≤ n < 1

2
(k2 + k) + 1

If we define Tk = 1
2
k(k + 1) = 1

2
(k2 + k) to be the kth triangular number for k ≥ 0, then

Tk−1 = 1
2
(k − 1)(k) = 1

2
(k2 − k).

Therefore,

⌊
1 +
√

8n− 7

2

⌋
= k for Tk−1 + 1 ≤ n < Tk + 1.

Since n is an integer, then

⌊
1 +
√

8n− 7

2

⌋
= k is true for Tk−1 + 1 ≤ n ≤ Tk.

When k = 1, this interval is T0 + 1 ≤ n ≤ T1 (or 1 ≤ n ≤ 1). When k = 2, this interval
is T1 + 1 ≤ n ≤ T2 (or 2 ≤ n ≤ 3). When k = 3, this interval is T2 + 1 ≤ n ≤ T3 (or
4 ≤ n ≤ 6). As k ranges over all positive integers, these intervals include every positive
integer n and do not overlap.
Therefore, we can determine the range of each of the functions f and g by examining the
values f(n) and g(n) when n is in these intervals.

For each non-negative integer k, define Rk to be the set of integers greater than k2 and
less than or equal to (k + 1)2. Thus, Rk = {k2 + 1, k2 + 2, . . . , k2 + 2k, k2 + 2k + 1}.
For example, R0 = {1}, R1 = {2, 3, 4}, R2 = {5, 6, 7, 8, 9}, and so on. Every positive
integer occurs in exactly one of these sets.
Also, for each non-negative integer k define Sk = {k2 + 2, k2 + 4, . . . , k2 + 2k} and define
Qk = {k2 + 1, k2 + 3, . . . , k2 + 2k + 1}. For example, S0 = {}, S1 = {3}, S2 = {6, 8},
Q0 = {1}, Q1 = {2, 4}, Q2 = {5, 7, 9}, and so on. Note that Rk = Qk ∪ Sk so every
positive integer occurs in exactly one Qk or in exactly one Sk, and that these sets do not
overlap since no two Sk’s overlap and no two Qk’s overlap and no Qk overlaps with an Sk.

We determine the range of the function g first.

For Tk−1 + 1 ≤ n ≤ Tk, we have

⌊
1 +
√

8n− 7

2

⌋
= k and so

2Tk−1 + 2 ≤ 2n ≤ 2Tk

2Tk−1 + 2 + k ≤ 2n+

⌊
1 +
√

8n− 7

2

⌋
≤ 2Tk + k

k2 − k + 2 + k ≤ g(n) ≤ k2 + k + k
k2 + 2 ≤ g(n) ≤ k2 + 2k
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Note that when n is in this interval and increases by 1, then the 2n term causes the value
of g(n) to increase by 2.
Therefore, for the values of n in this interval, g(n) takes precisely the values k2 + 2,
k2 + 4, k2 + 6, . . . , k2 + 2k.
In other words, the range of g over this interval of its domain is precisely the set Sk.
As k ranges over all positive integers (that is, as these intervals cover the domain of g),
this tells us that the range of g is precisely the integers in the sets S1,S2,S3, . . ..
(We could also include S0 in this list since it is the empty set.)

We note next that f(1) = 2−
⌊

1 +
√

8− 7

2

⌋
= 1, the only element of Q0.

For k ≥ 1 and Tk + 1 ≤ n ≤ Tk+1, we have

⌊
1 +
√

8n− 7

2

⌋
= k + 1 and so

2Tk + 2 ≤ 2n ≤ 2Tk+1

2Tk + 2− (k + 1) ≤ 2n−
⌊

1 +
√

8n− 7

2

⌋
≤ 2Tk+1 − (k + 1)

k2 + k + 2− k − 1 ≤ f(n) ≤ (k + 1)(k + 2)− k − 1
k2 + 1 ≤ f(n) ≤ k2 + 2k + 1

Note that when n is in this interval and increases by 1, then the 2n term causes the value
of f(n) to increase by 2.
Therefore, for the values of n in this interval, f(n) takes precisely the values k2 + 1,
k2 + 3, k2 + 5, . . . , k2 + 2k + 1.
In other words, the range of f over this interval of its domain is precisely the set Qk.
As k ranges over all positive integers (that is, as these intervals cover the domain of f),
this tells us that the range of f is precisely the integers in the sets Q0,Q1,Q2, . . ..

Therefore, the range of f is the set of elements in the sets Q0,Q1,Q2, . . . and the range
of g is the set of elements in the sets S0,S1,S2, . . .. These ranges include every positive
integer and do not overlap.

10. (a) Suppose that ∠KAB = θ.
Since ∠KAC = 2∠KAB, then ∠KAC = 2θ and ∠BAC = ∠KAC + ∠KAB = 3θ.
Since 3∠ABC = 2∠BAC, then ∠ABC = 2

3
× 3θ = 2θ.

Since ∠AKC is exterior to 4AKB, then ∠AKC = ∠KAB + ∠ABC = 3θ.
This gives the following configuration:

C

BA

K

θ
2θ

2θ

3θ
b

c

d x

a  x

Now 4CAK is similar to 4CBA since the triangles have a common angle at C and
∠CAK = ∠CBA.



2011 Euclid Contest Solutions Page 14

Therefore,
AK

BA
=
CA

CB
or

d

c
=
b

a
and so d =

bc

a
.

Also,
CK

CA
=
CA

CB
or

a− x
b

=
b

a
and so a− x =

b2

a
or x = a− b2

a
=
a2 − b2

a
, as required.

(b) From (a), bc = ad and a2 − b2 = ax and so we obtain

LS = (a2 − b2)(a2 − b2 + ac) = (ax)(ax+ ac) = a2x(x+ c)

and
RS = b2c2 = (bc)2 = (ad)2 = a2d2

In order to show that LS = RS, we need to show that x(x+ c) = d2 (since a > 0).

Method 1: Use the Sine Law
First, we derive a formula for sin 3θ which we will need in this solution:

sin 3θ = sin(2θ + θ)

= sin 2θ cos θ + cos 2θ sin θ

= 2 sin θ cos2 θ + (1− 2 sin2 θ) sin θ

= 2 sin θ(1− sin2 θ) + (1− 2 sin2 θ) sin θ

= 3 sin θ − 4 sin3 θ

Since ∠AKB = 180◦−∠KAB−∠KBA = 180◦− 3θ, then using the Sine Law in 4AKB
gives

x

sin θ
=

d

sin 2θ
=

c

sin(180◦ − 3θ)

Since sin(180◦ − X) = sinX, then sin(180◦ − 3θ) = sin 3θ, and so x =
d sin θ

sin 2θ
and

c =
d sin 3θ

sin 2θ
. This gives

x(x+ c) =
d sin θ

sin 2θ

(
d sin θ

sin 2θ
+
d sin 3θ

sin 2θ

)
=

d2 sin θ

sin2 2θ
(sin θ + sin 3θ)

=
d2 sin θ

sin2 2θ
(sin θ + 3 sin θ − 4 sin3 θ)

=
d2 sin θ

sin2 2θ
(4 sin θ − 4 sin3 θ)

=
4d2 sin2 θ

sin2 2θ
(1− sin2 θ)

=
4d2 sin2 θ cos2 θ

sin2 2θ

=
4d2 sin2 θ cos2 θ

(2 sin θ cos θ)2

=
4d2 sin2 θ cos2 θ

4 sin2 θ cos2 θ
= d2
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as required.

We could have instead used the formula sinA + sinB = 2 sin

(
A+B

2

)
cos

(
A−B

2

)
to

show that sin 3θ + sin θ = 2 sin 2θ cos θ, from which

sin θ(sin 3θ + sin θ) = sin θ(2 sin 2θ cos θ) = 2 sin θ cos θ sin 2θ = sin2 2θ

Method 2: Extend AB
Extend AB to E so that BE = BK = x and join KE.

C

BA

K

θ
2θ

2θ

3θ
b

c

d x

a  x

x E

Now 4KBE is isosceles with ∠BKE = ∠KEB.
Since ∠KBA is the exterior angle of 4KBE, then ∠KBA = 2∠KEB = 2θ.
Thus, ∠KEB = ∠BKE = θ.
But this also tells us that ∠KAE = ∠KEA = θ.
Thus, 4KAE is isosceles and so KE = KA = d.

C

BA

K

θ
2θ

2θ

3θ
b

c

d x

a  x

x Eθ

d

So 4KAE is similar to 4BKE, since each has two angles equal to θ.

Thus,
KA

BK
=
AE

KE
or

d

x
=
c+ x

d
and so d2 = x(x+ c), as required.

Method 3: Use the Cosine Law and the Sine Law
We apply the Cosine Law in 4AKB to obtain

AK2 = BK2 +BA2 − 2(BA)(BK) cos(∠KBA)

d2 = x2 + c2 − 2cx cos(2θ)

d2 = x2 + c2 − 2cx(2 cos2 θ − 1)

Using the Sine Law in 4AKB, we get
x

sin θ
=

d

sin 2θ
or

sin 2θ

sin θ
=
d

x
or

2 sin θ cos θ

sin θ
=
d

x

and so cos θ =
d

2x
.
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Combining these two equations,

d2 = x2 + c2 − 2cx

(
2d2

4x2
− 1

)
d2 = x2 + c2 − cd2

x
+ 2cx

d2 +
cd2

x
= x2 + 2cx+ c2

d2 +
cd2

x
= (x+ c)2

xd2 + cd2 = x(x+ c)2

d2(x+ c) = x(x+ c)2

d2 = x(x+ c)

as required (since x+ c 6= 0).

(c) Solution 1
Our goal is to find a triple of positive integers that satisfy the equation in (b) and are the
side lengths of a triangle.
First, we note that if (A,B,C) is a triple of real numbers that satisfies the equation in
(b) and k is another real number, then the triple (kA, kB, kC) also satisfies the equation
from (b), since

(k2A2−k2B2)(k2A2−k2B2+kAkC) = k4(A2−B2)(A2−B2+AC) = k4(B2C2) = (kB)2(kC)2

Therefore, we start by trying to find a triple (a, b, c) of rational numbers that satisfies
the equation in (b) and forms a triangle, and then “scale up” this triple to form a triple
(ka, kb, kc) of integers.
To do this, we rewrite the equation from (b) as a quadratic equation in c and solve for c
using the quadratic formula.
Partially expanding the left side from (b), we obtain

(a2 − b2)(a2 − b2) + ac(a2 − b2) = b2c2

which we rearrange to obtain

b2c2 − c(a(a2 − b2))− (a2 − b2)2 = 0

By the quadratic formula,

c =
a(a2 − b2)±

√
a2(a2 − b2)2 + 4b2(a2 − b2)2

2b2
=
a(a2 − b2)±

√
(a2 − b2)2(a2 + 4b2)

2b2

Since ∠BAC > ∠ABC, then a > b and so a2 − b2 > 0, which gives

c =
a(a2 − b2)± (a2 − b2)

√
a2 + 4b2

2b2
=

(a2 − b2)
2b2

(a±
√
a2 + 4b2)

Since a2 + 4b2 > 0, then
√
a2 + 4b2 > a, so the positive root is

c =
(a2 − b2)

2b2
(a+

√
a2 + (2b)2)
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We try to find integers a and b that give a rational value for c. We will then check to see
if this triple (a, b, c) forms the side lengths of a triangle, and then eventually scale these
up to get integer values.
One way for the value of c to be rational (and in fact the only way) is for

√
a2 + (2b)2 to

be an integer, or for a and 2b to be the legs of a Pythagorean triple.
Since

√
32 + 42 is an integer, then we try a = 3 and b = 2, which gives

c =
(32 − 22)

2 · 22
(3 +

√
32 + 42) = 5

and so (a, b, c) = (3, 2, 5). Unfortunately, these lengths do not form a triangle, since
3 + 2 = 5.
(The Triangle Inequality tells us that three positive real numbers a, b and c form a triangle
if and only if a+ b > c and a+ c > b and b+ c > a.)
We can continue to try small Pythagorean triples.
Now 152 + 82 = 172, but a = 15 and b = 4 do not give a value of c that forms a triangle
with a and b.
However, 162 + 302 = 342, so we can try a = 16 and b = 15 which gives

c =
(162 − 152)

2 · 152
(16 +

√
162 + 302) =

31

450
(16 + 34) =

31

9

Now the lengths (a, b, c) = (16, 15, 31
9

) do form the sides of a triangle since a + b > c and
a+ c > b and b+ c > a.
Since these values satisfy the equation from (b), then we can scale them up by a factor of
k = 9 to obtain the triple (144, 135, 31) which satisfies the equation from (b) and are the
side lengths of a triangle.
(Using other Pythagorean triples, we could obtain other triples of integers that work.)

Solution 2
We note that the equation in (b) involves only a, b and c and so appears to depend only
on the relationship between the angles ∠CAB and ∠CBA in 4ABC.
Using this premise, we use 4ABC, remove the line segment AK and draw the altitude
CF .

C

BA
3θ 2θ

b a

a cos 2θb cos 3θ F

Because we are only looking for one triple that works, we can make a number of assump-
tions that may or may not be true in general for such a triangle, but which will help us
find an example.
We assume that 3θ and 2θ are both acute angles; that is, we assume that θ < 30◦.
In 4ABC, we have AF = b cos 3θ, BF = a cos 2θ, and CF = b sin 3θ = a sin 2θ.
Note also that c = b cos 3θ + a cos 2θ.



2011 Euclid Contest Solutions Page 18

One way to find the integers a, b, c that we require is to look for integers a and b and an
angle θ with the properties that b cos 3θ and a cos 2θ are integers and b sin 3θ = a sin 2θ.
Using trigonometric formulae,

sin 2θ = 2 sin θ cos θ

cos 2θ = 2 cos2 θ − 1

sin 3θ = 3 sin θ − 4 sin3 θ

(from the calculation in (a), Solution 1, Method 1)

cos 3θ = cos(2θ + θ)

= cos 2θ cos θ − sin 2θ sin θ

= (2 cos2 θ − 1) cos θ − 2 sin2 θ cos θ

= (2 cos2 θ − 1) cos θ − 2(1− cos2 θ) cos θ

= 4 cos3 θ − 3 cos θ

So we can try to find an angle θ < 30◦ with cos θ a rational number and then integers a
and b that make b sin 3θ = a sin 2θ and ensure that b cos 3θ and a cos 2θ are integers.
Since we are assuming that θ < 30◦, then cos θ >

√
3
2
≈ 0.866.

The rational number with smallest denominator that is larger than
√
3
2

is 7
8
, so we try the

acute angle θ with cos θ = 7
8
.

In this case, sin θ =
√

1− cos2 θ =
√
15
8

, and so

sin 2θ = 2 sin θ cos θ = 2× 7
8
×
√
15
8

= 7
√
15

32

cos 2θ = 2 cos2 θ − 1 = 2× 49
64
− 1 = 17

32

sin 3θ = 3 sin θ − 4 sin3 θ = 3×
√
15
8
− 4× 15

√
15

512
= 33

√
15

128

cos 3θ = 4 cos3 θ − 3 cos θ = 4× 343
512
− 3× 7

8
= 7

128

To have b sin 3θ = a sin 2θ, we need 33
√
15

128
b = 7

√
15

32
a or 33b = 28a.

To ensure that b cos 3θ and a cos 2θ are integers, we need 7
128
b and 17

32
a to be integers, and

so a must be divisible by 32 and b must be divisible by 128.
The integers a = 33 and b = 28 satisfy the equation 33b = 28a.
Multiplying each by 32 gives a = 1056 and b = 896 which satisfy the equation 33b = 28a
and now have the property that b is divisible by 128 (with quotient 7) and a is divisible
by 32 (with quotient 33).
With these values of a and b, we obtain c = b cos 3θ+a cos 2θ = 896× 7

128
+1056× 17

32
= 610.

We can then check that the triple (a, b, c) = (1056, 896, 610) satisfies the equation from
(b), as required.
As in our discussion in Solution 1, each element of this triple can be divided by 2 to obtain
the “smaller” triple (a, b, c) = (528, 448, 305) that satisfies the equation too.
Using other values for cos θ and integers a and b, we could obtain other triples (a, b, c) of
integers that work.


