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1. (a) Answer: a = 5
Since (a, a) lies on the line 3x− y = 10, then 3a− a = 10 or 2a = 10 or a = 5.

(b) Answer: (6, 2)
Solution 1
To get from A to B, we move 2 units to the right and 1 unit up.

y

x
B(2, 0)

A(0, 1)

C

Since C lies on the same straight line as A and B, then to get from B to C we move 2
units to the right and 1 unit up twice, or 4 units to the right and 2 units up.
Thus, the coordinates of C are (6, 2).

Solution 2
Label the origin as O and drop a perpendicular from C to P on the x-axis.

y

x
B(2, 0)

A(0, 1)

C

O

P

Then 4AOB is similar to 4CPB since both are right-angled and they have equal angles
at B.
Since BC = 2AB, then CP = 2AO = 2(1) = 2 and BP = 2BO = 2(2) = 4.
Therefore, the coordinates of C are (2 + 4, 0 + 2) = (6, 2).

(c) By the Pythagorean Theorem, AO2 = AB2 −OB2 = 502 − 402 = 900, so AO = 30.
Therefore, the coordinates of A are (0, 30).
By the Pythagorean Theorem, CD2 = CB2 −BD2 = 502 − 482 = 196, so CD = 14.
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y

x

A M
C

DBO

50
50

4840

30
14

Therefore, the coordinates of C are (40 + 48, 14) = (88, 14).
Since M is the midpoint of AC, then the coordinates of M are(

1

2
(0 + 88),

1

2
(30 + 14)

)
= (44, 22)

2. (a) Answer: x = −2
Solution 1
Since y = 2x + 3, then 4y = 4(2x + 3) = 8x + 12.
Since 4y = 8x + 12 and 4y = 5x + 6, then 8x + 12 = 5x + 6 or 3x = −6 or x = −2.

Solution 2
Since 4y = 5x + 6, then y = 5

4
x + 6

4
= 5

4
x + 3

2
.

Since y = 2x + 3 and y = 5
4
x + 3

2
, then 2x + 3 = 5

4
x + 3

2
or 3

4
x = −3

2
or x = −2.

Solution 3
Since the second equation contains a “5x”, we multiply the first equation by 5

2
to obtain

a 5x term, and obtain 5
2
y = 5x + 15

2
.

Subtracting this from 4y = 5x + 6, we obtain 3
2
y = −3

2
or y = −1.

Since y = −1, then −1 = 2x + 3 or 2x = −4 or x = −2.

(b) Answer: a = 6
Solution 1
Adding the three equations together, we obtain a−3b+b+2b+7c−2c−5c = −10+3+13
or a = 6.

Solution 2
Multiplying the second equation by 3, we obtain 3b− 6c = 9.
Adding this new equation to the first equation, we obtain c = −1.
Substituting this back into the original second equation, we obtain b = 3 + 2c = 1.
Substituting into the third equation, a = −2b + 5c + 13 = −2− 5 + 13 = 6.

(c) Solution 1
Let J be John’s score and M be Mary’s score.
Since two times John’s score was 60 more than Mary’s score, then 2J = M + 60.
Since two times Mary’s score was 90 more than John’s score, then 2M = J + 90.
Adding these two equations, we obtain 2J + 2M = M + J + 150 or J + M = 150 or
J + M

2
= 75.

Therefore, the average of their two scores was 75.
(Note that we didn’t have to solve for their individual scores.)
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Solution 2
Let J be John’s score and M be Mary’s score.
Since two times John’s score was 60 more than Mary’s score, then 2J = M + 60, so
M = 2J − 60.
Since two times Mary’s score was 90 more than John’s score, then 2M = J + 90.
Substituting the first equation into the second, we obtain

2(2J − 60) = J + 90

4J − 120 = J + 90

3J = 210

J = 70

Substituting into M = 2J − 60 gives M = 80.
Therefore, the average of their scores (ie. the average of 70 and 80) is 75.

3. (a) Answer: x = 50
Simplifying using exponent rules,

2(1612) + 2(816) = 2((24)12) + 2((23)16) = 2(248) + 2(248) = 4(248) = 22(248) = 250

Therefore, since 2x = 2(1612) + 2(816) = 250, then x = 50.

(b) Solution 1
We factor the given equation (f(x))

2 − 3f(x) + 2 = 0 as (f(x)− 1)(f(x)− 2) = 0.
Therefore, f(x) = 1 or f(x) = 2.
If f(x) = 1, then 2x− 1 = 1 or 2x = 2 or x = 1.
If f(x) = 2, then 2x− 1 = 2 or 2x = 3 or x = 3

2
.

Therefore, the values of x are x = 1 or x = 3
2
.

Solution 2
Since f(x) = 2x− 1 and (f(x))

2 − 3f(x) + 2 = 0, then

(2x− 1)2 − 3(2x− 1) + 2 = 0

4x2 − 4x + 1− 6x + 3 + 2 = 0

4x2 − 10x + 6 = 0

2x2 − 5x + 3 = 0

(x− 1)(2x− 3) = 0

Therfore, x = 1 or x = 3
2
.

4. (a) Answer: 14
15

Solution 1
The possible pairs of numbers on the tickets are (listed as ordered pairs): (1, 2), (1, 3),
(1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), and (5, 6).
There are fifteen such pairs. (We treat the pair of tickets numbered 2 and 4 as being the
same as the pair numbered 4 and 2.)
The pairs for which the smaller of the two numbers is less than or equal to 4 are (1, 2),
(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 5), and (4, 6).
There are fourteen such pairs.
Therefore, the probability of selecting such a pair of tickets is 14

15
.
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Solution 2
We find the probability that the smaller number on the two tickets is NOT less than or
equal to 4.
Therefore, the smaller number on the two tickets is at least 5.
Thus, the pair of numbers must be 5 and 6, since two distinct numbers less than or equal
to 6 are being chosen.
As in Solution 1, we can determine that there are fifteen possible pairs that we can se-
lected.
Therefore, the probability that the smaller number on the two tickets is NOT less than or
equal to 4 is 1

15
, so the probability that the smaller number on the two tickets IS less than

or equal to 4 is 1− 1
15

= 14
15

.

(b) Solution 1
Since ∠HLP = 60◦ and ∠BLP = 30◦, then ∠HLB = ∠HLP − ∠BLP = 30◦.
Also, since ∠HLP = 60◦ and ∠HPL = 90◦, then ∠LHP = 180◦ − 90◦ − 60◦ = 30◦.

P L

B

H

400

30

30

30

Therefore, 4HBL is isosceles and BL = HB = 400 m.

In 4BLP , BL = 400 m and ∠BLP = 30◦, so LP = BL cos(30◦) = 400
(√

3
2

)
= 200

√
3

m.
Therefore, the distance between L and P is 200

√
3 m.

Solution 2
Since ∠HLP = 60◦ and ∠BLP = 30◦, then ∠HLB = ∠HLP − ∠BLP = 30◦.
Also, since ∠HLP = 60◦ and ∠HPL = 90◦, then ∠LHP = 180◦ − 90◦ − 60◦ = 30◦.
Also, ∠LBP = 60◦.
Let LP = x.

P L

B

H

400

30

30

30

60

x

Since 4BLP is 30◦-60◦-90◦, then BP : LP = 1 :
√

3, so BP = 1√
3
LP = 1√

3
x.
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Since 4HLP is 30◦-60◦-90◦, then HP : LP =
√

3 : 1, so HP =
√

3LP =
√

3x.
But HP = HB + BP so

√
3x = 400 +

1√
3
x

3x = 400
√

3 + x

2x = 400
√

3

x = 200
√

3

Therefore, the distance from L to P is 200
√

3 m.

5. (a) Answer: (6,5)
After 2 moves, the goat has travelled 1 + 2 = 3 units.
After 3 moves, the goat has travelled 1 + 2 + 3 = 6 units.
Similarly, after n moves, the goat has travelled a total of 1 + 2 + 3 + · · ·+ n units.
For what value of n is 1 + 2 + 3 + · · ·+ n equal to 55?
The fastest way to determine the value of n is by adding the first few integers until we
obtain a sum of 55. This will be n = 10.
(We could also do this by remembering that 1 + 2 + 3 + · · ·+ n = 1

2
n(n + 1) and solving

for n this way.)
So we must determine the coordinates of the goat after 10 moves.
We consider first the x-coordinate.
Since starting at (0, 0) the goat has moved 2 units in the positive x direction, 4 units in the
negative x direction, 6 units in the positive x direction, 8 units in the negative x direction
and 10 units in the positive x direction, so its x coordinate should be 2−4+6−8+10 = 6.
Similarly, its y-coordinate should be 1− 3 + 5− 7 + 9 = 5.
Therefore, after having travelled a distance of 55 units, the goat is at the point (6, 5).

(b) Solution 1
Since the sequence 4, 4r, 4r2 is also arithmetic, then the difference between 4r2 and 4r
equals the difference between 4r and 4, or

4r2 − 4r = 4r − 4

4r2 − 8r + 4 = 0

r2 − 2r + 1 = 0

(r − 1)2 = 0

Therefore, the only value of r is r = 1.

Solution 2
Since the sequence 4, 4r, 4r2 is also arithmetic, then we can write 4r = 4 + d and
4r2 = 4 + 2d for some real number d. (Here, d is the common difference in this arithmetic
sequence.)
Then d = 4r − 4 and 2d = 4r2 − 4 or d = 2r2 − 2.
Therefore, equating the two expressions for d, we obtain 2r2−2 = 4r−4 or 2r2−4r+2 = 0
or r2 − 2r + 1 = 0 or (r − 1)2 = 0.
Therefore, the only value of r is r = 1.

6. (a) Answer: 4π
First, we notice that whenever an equilateral triangle of side length 3 is placed inside a



2005 Euclid Contest Solutions Page 7

circle of radius 3 with two of its vertices on the circle, then the third vertex will be at the
centre of the circle.
This is because if we place 4XY Z with Y and Z on the circle and connect Y and Z to
the centre O, then OY = OZ = 3, so 4OY Z is equilateral (since all three sides have
length 3). Thus 4XY Z and 4OY Z must be the same, so X is at the same point as O.

3

3

3

O

Y

Z

Thus, in the starting position, A is at the centre of the circle.
As the triangle is rotated about C, the point B traces out an arc of a circle of radius 3.
What fraction of the circle is traced out?
When point A reaches point A1 on the circle, we have AC = 3 and CA1 = 3. Since A is at
the centre of the circle, then AA1 = 3 as well, so4AA1C is equilateral, and ∠A1CA = 60◦,
so the triangle has rotated through 60◦.

A

B

C

A
1

Therefore, B has traced out 60◦

360◦
= 1

6
of a circle of radius 3.

Notice that A has also traced out an arc of the same length. When A reaches the circle,
we have A and C on the circle, so B must be at the centre of the circle.
Thus, on the next rotation, B again rotates through 1

6
of a circle of radius 3 as it moves

to the circle.
On the third rotation, the triangle rotates about B, so B does not move. After three
rotations, the triangle will have A at the centre and B and C on the circle, with the net
result that the triangle has rotated 180◦ about the centre of the circle.
Thus, to return to its original position, the triangle must undergo three more of these
rotations, and B will behave in the same way as it did for the first three rotations.
Thus, in total, B moves four times along an arc equal to 1

6
of a circle of radius 3.

Therefore, the distance travelled by B is 4(1
6
)(2π(3)) = 4π.

(b) In order to determine CD, we must determine one of the angles (or at least some infor-
mation about one of the angles) in 4BCD.
To do this, we look at ∠A use the fact that ∠A + ∠C = 180◦.
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A

D

C

B

5 6

7

4

Using the cosine law in 4ABD, we obtain

72 = 52 + 62 − 2(5)(6) cos(∠A)

49 = 61− 60 cos(∠A)

cos(∠A) =
1

5

Since cos(∠A) = 1
5

and ∠A + ∠C = 180◦, then cos(∠C) = − cos(180◦ − ∠A) = −1
5
.

(We could have calculated the actual size of ∠A using cos(∠A) = 1
5

and then used this
to calculate the size of ∠C, but we would introduce the possibility of rounding error by
doing this.)
Then, using the cosine law in 4BCD, we obtain

72 = 42 + CD2 − 2(4)(CD) cos(∠C)

49 = 16 + CD2 − 8(CD)

(
−1

5

)
0 = 5CD2 + 8CD − 165

0 = (5CD + 33)(CD − 5)

So CD = −33
5

or CD = 5. (We could have also determined these roots using the quadratic
formula.)
Since CD is a length, it must be positive, so CD = 5.

(We could have also proceeded by using the sine law in 4BCD to determine ∠BDC
and then found the size of ∠DBC, which would have allowed us to calculate CD using
the sine law. However, this would again introduce the potential of rounding error.)

7. (a) Answer: Maximum = 5, Minimum = 1
We rewrite by completing the square as f(x) = sin2 x− 2 sin x + 2 = (sin x− 1)2 + 1.
Therefore, since (sin x − 1)2 ≥ 0, then f(x) ≥ 1, and in fact f(x) = 1 when sin x = 1
(which occurs for instance when x = 90◦).
Thus, the minimum value of f(x) is 1.
To maximize f(x), we must maximize (sin x− 1)2.
Since −1 ≤ sin x ≤ 1, then (sin x− 1)2 is maximized when sin x = −1 (for instance, when
x = 270◦). In this case, (sin x− 1)2 = 4, so f(x) = 5.
Thus, the maximum value of f(x) is 5.

(b) From the diagram, the x-intercepts of the parabola are x = −k and x = 3k.
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x

V

(3k, 0)

(0, 3k)

(  k, 0)

y

Since we are given that y = −1
4
(x− r)(x− s), then the x-intercepts are r and s, so r and

s equal −k and 3k in some order.
Therefore, we can rewrite the parabola as y = −1

4
(x− (−k))(x− 3k).

Since the point (0, 3k) lies on the parabola, then 3k = −1
4
(0 + k)(0− 3k) or 12k = 3k2 or

k2 − 4k = 0 or k(k − 4) = 0.
Thus, k = 0 or k = 4.
Since the two roots are distinct, then we cannot have k = 0 (otherwise both x-intercepts
would be 0).
Thus, k = 4.
This tells us that the equation of the parabola is y = −1

4
(x + 4)(x − 12) or y = −1

4
x2 +

2x + 12.
We still have to determine the coordinates of the vertex, V .
Since the x-intercepts of the parabola are −4 and 12, then the x-coordinate of the vertex
is the average of these intercepts, or 4.

(We could have also used the fact that the x-coordinate is − b

2a
= − 2

2(−1
4
)
.)

Therefore, the y-coordinate of the vertex is y = −1
4
(42) + 2(4) + 12 = 16.

Thus, the coordinates of the vertex are (4, 16).

8. (a) We look at the three pieces separately.
If x < −4, f(x) = 4 so g(x) =

√
25− [f(x)]2 =

√
25− 42 =

√
9 = 3.

So g(x) is the horizontal line y = 3 when x < −4.
If x > 5, f(x) = −5 so g(x) =

√
25− [f(x)]2 =

√
25− (−5)2 =

√
0 = 0.

So g(x) is the horizontal line y = 0 when x > 5.
So far, our graph looks like this:



2005 Euclid Contest Solutions Page 10

y

x

3

3

 3

 3

6

6

 6

 6

If −4 ≤ x ≤ 5, f(x) = −x so g(x) =
√

25− [f(x)]2 =
√

25− (−x)2 =
√

25− x2.
What is this shape?
If y = g(x), then we have y =

√
25− x2 or y2 = 25− x2 or x2 + y2 = 25.

Therefore, this shape is a section of the upper half (since y is a positive square-root) of
the circle x2 + y2 = 25, ie. the circle with centre (0, 0) and radius 5.
We must check the endpoints.
When x = −4, we have g(−4) =

√
25− (−4))2 = 3.

When x = 5, we have g(5) =
√

25− 52 = 0.
Therefore, the section of the circle connects up with the other two sections of our graph
already in place.
Thus, our final graph is:
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y

x

3

3

 3

 3

6

6

 6

 6

(b) Solution 1
Let the centres of the two circles be O1 and O2.
Join A and B to O1 and B and C to O2.
Designate two points W and X on either side of A on one tangent line, and two points Y
and Z on either side of C on the other tangent line.

A

B

C

O
1

O
2

W X

Y
Z

Let ∠XAB = θ.
Since WX is tangent to the circle with centre O1 at A, then O1A is perpendicular to WX,
so ∠O1AB = 90◦ − θ.
Since O1A = O1B because both are radii, then 4AO1B is isosceles, so ∠O1BA =
∠O1AB = 90◦ − θ.
Since the two circles are tangent at B, then the line segment joining O1 and O2 passes
through B, ie. O1BO2 is a straight line segment.
Thus, ∠O2BC = ∠O1BA = 90◦ − θ, by opposite angles.
Since O2B = O2C, then similarly to above, ∠O2CB = ∠O2BC = 90◦ − θ.
Since Y Z is tangent to the circle with centre O2 at C, then O2C is perpendicular to Y Z.
Thus, ∠Y CB = 90◦ − ∠O2CB = θ.
Since ∠XAB = ∠Y CB, then WX is parallel to Y Z, by alternate angles, as required.
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Solution 2
Let the centres of the two circles be O1 and O2.
Join A and B to O1 and B and C to O2.
Since AO1 and BO1 are radii of the same circle, AO1 = BO1 so 4AO1B is isosceles, so
∠O1AB = ∠O1BA.

A

B

C

O
1

O
2

Since BO2 and CO2 are radii of the same circle, BO2 = CO2 so 4BO2C is isosceles, so
∠O2BC = ∠O2CB.
Since the two circles are tangent at B, then O1BO2 is a line segment (ie. the line segment
joining O1 and O2 passes through the point of tangency of the two circles).
Since O1BO2 is straight, then ∠O1BA = ∠O2BC, by opposite angles.
Thus, ∠O1AB = ∠O1BA = ∠O2BC = ∠O2CB.
This tells us that 4AO1B is similar to 4BO2C, so ∠AO1B = ∠BO2C or ∠AO1O2 =
∠CO2O1.
Therefore, AO1 is parallel to CO2, by alternate angles.
But A and C are points of tangency, AO1 is perpendicular to the tangent line at A and
CO2 is perpendicular to the tangent line at C.
Since AO1 and CO2 are parallel, then the two tangent lines must be parallel.

9. (a) Solution 1
We have (x− p)2 + y2 = r2 and x2 + (y − p)2 = r2, so at the points of intersection,

(x− p)2 + y2 = x2 + (y − p)2

x2 − 2px + p2 + y2 = x2 + y2 − 2py + p2

−2px = −2py

and so x = y (since we may assume that p 6= 0 otherwise the two circles would coincide).
Therefore, a and b are the two solutions of the equation (x− p)2 + x2 = r2 or 2x2− 2px +
(p2 − r2) = 0 or x2 − px + 1

2
(p2 − r2)=0.

Using the relationship between the sum and product of roots of a quadratic equation and
its coefficients, we obtain that a + b = p and ab = 1

2
(p2 − r2).

(We could have solved for a and b using the quadratic formula and calculated these di-
rectly.)
So we know that a + b = p.
Lastly, a2 + b2 = (a + b)2 − 2ab = p2 − 2

(
1
2
(p2 − r2)

)
= r2, as required.

Solution 2
Since the circles are reflections of one another in the line y = x, then the two points
of intersection must both lie on the line y = x, ie. A has coordinates (a, a) and B has
coordinates (b, b).
Therefore, (a− p)2 + a2 = r2 and (b− p)2 + b2 = r2, since these points lie on both circles.



2005 Euclid Contest Solutions Page 13

Subtracting the two equations, we get

(b− p)2 − (a− p)2 + b2 − a2 = 0

((b− p)− (a− p))((b− p) + (a− p)) + (b− a)(b + a) = 0

(b− a)(a + b− 2p) + (b− a)(b + a) = 0

(b− a)(a + b− 2p + b + a) = 0

2(b− a)(a + b− p) = 0

Since a 6= b, then we must have a + b = p, as required.
Since a + b = p, then a − p = −b, so substituting back into (a − p)2 + a2 = r2 gives
(−b)2 + a2 = r2, or a2 + b2 = r2, as required.

(b) We first draw a diagram.

y

x

D(0, p)

C(p, 0)

A

B

We know that C has coordinates (p, 0) and D has coordinates (0, p).
Thus, the slope of line segment CD is −1.
Since the points A and B both lie on the line y = x, then the slope of line segment AB is
1.
Therefore, AB is perpendicular to CD, so CADB is a kite, and so its area is equal to
1
2
(AB)(CD).

(We could derive this by breaking quadrilateral CADB into 4CAB and 4DAB.)
Since C has coordinates (p, 0) and D has coordinates (0, p), then CD =

√
p2 + (−p)2 =√

2p2.
(We do not know if p is positive, so this is not necessarily equal to

√
2p.)

We know that A has coordinates (a, a) and B has coordinates (b, b), so

AB =
√

(a− b)2 + (a− b)2

=
√

2a2 − 4ab + 2b2

=
√

2(a2 + b2)− 4ab

=

√
2r2 − 4

(
1

2
(p2 − r2)

)
=

√
4r2 − 2p2

Therefore, the area of quadrilateral CADB is

1

2
(AB)(CD) =

1

2

√
4r2 − 2p2

√
2p2 =

√
2r2p2 − p4
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To maximize this area, we must maximize 2r2p2 − p4 = 2r2(p2)− (p2)2.
Since r is fixed, we can consider this as a quadratic polynomial in p2. Since the coefficient
of (p2)2 is negative, then this is a parabola opening downwards, so we find its maximum
value by finding its vertex.

The vertex of 2r2(p2)− (p2)2 is at p2 = − 2r2

2(−1)
= r2.

So the maximum area of the quadrilateral occurs when p is chosen so that p2 = r2.
Since p2 = r2, then (a + b)2 = p2 = r2 so a2 + 2ab + b2 = r2.
Since a2 + b2 = r2, then 2ab = 0 so either a = 0 or b = 0, and so either A has coordinates
(0, 0) or B has coordinates (0, 0), ie. either A is the origin or B is the origin.

(c) In (b), we calculated that AB =
√

4r2 − 2p2 =
√

2
√

2r2 − p2.
Since r and p are integers (and we assume that neither r nor p is 0), then 2r2 − p2 6= 0,
so the minimum possible non-negative value for 2r2 − p2 is 1, since 2r2 − p2 must be an
integer.
Therefore, the minimum possible distance between A and B should be

√
2
√

1 =
√

2.
Can we find positive integers p and r that give us this value?
Yes – if r = 5 and p = 7, then 2r2 − p2 = 1, so AB =

√
2.

(There are in fact an infinite number of positive integer solutions to the equation 2r2−p2 =
1 or equivalently p2 − 2r2 = −1. This type of equation is called Pell’s Equation.)

10. (a) We proceed directly.
On the first pass from left to right, Josephine closes all of the even numbered lockers,
leaving the odd ones open.
The second pass proceeds from right to left. Before the pass, the lockers which are open
are 1, 3, . . ., 47, 49.
On the second pass, she shuts lockers 47, 43, 39, . . ., 3.
The third pass proceeds from left to right. Before the pass, the lockers which are open are
1, 5, . . ., 45, 49.
On the third pass, she shuts lockers 5, 13, . . ., 45.
This leaves lockers 1, 9, 17, 25, 33, 41, 49 open.
On the fourth pass, from right to left, lockers 41, 25 and 9 are shut, leaving 1, 17, 33, 49.
On the fifth pass, from left to right, lockers 17 and 49 are shut, leaving 1 and 33 open.
On the sixth pass, from right to left, locker 1 is shut, leaving 33 open.
Thus, f(50) = 33.

(b)&(c) Solution 1
First, we note that if n = 2k is even, then f(n) = f(2k) = f(2k − 1) = f(n − 1). See
Solution 2 for this justification.
Therefore, we only need to look for odd values of n in parts (b) and (c).

Suppose that there was an n so that f(n) = 2005, ie. 2005 is the last locker left open.
On the first pass, Josephine closes every other locker starting at the beginning, so she
closes all lockers numbered m with m ≡ 0 (mod 2).
This leaves only odd-numbered lockers open, ie. only lockers m with m ≡ 1 or 3 (mod 4).
On her second pass, she closes every other open locker, starting from the right-hand end.
Thus, she will close every fourth locker from the original row.
Since we want 2005 to be left open and 2005 ≡ 1 (mod 4), then she must close all lockers
numbered m with m ≡ 3 (mod 4).
This leaves open only the lockers m with m ≡ 1 (mod 4), or equivalently lockers with
m ≡ 1 or 5 (mod 8).
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On her third pass, she closes every other open locker, starting from the left-hand end.
Thus, she will close every eighth locker from the original row.
Since locker 1 is still open, then she starts by closing locker 5, and so closes all lockers m
with m ≡ 5 (mod 8).
But since 2005 ≡ 5 (mod 8), then she closes locker 2005 on this pass, a contradiction.
Therefore, there can be no integer n with f(n) = 2005.

Next, we show that there are infinitely many positive integers n such that f(n) = f(2005).
To do this, we first make a table of what happens when there are 2005 lockers in the row.
We record the pass #, the direction of the pass, the leftmost locker that is open, the
rightmost locker that is open, all open lockers before the pass, which lockers will be closed
on the pass, and which lockers will be left open after the pass:

Pass # Dir. L Open R Open Open To close Leaves Open
1 L to R 1 2005 All ≡ 0 (mod 2) ≡ 1 (mod 2)
2 R to L 1 2005 ≡ 1, 3 (mod 4) ≡ 3 (mod 4) ≡ 1 (mod 4)
3 L to R 1 2005 ≡ 1, 5 (mod 8) ≡ 5 (mod 8) ≡ 1 (mod 8)
4 R to L 1 2001 ≡ 1, 9 (mod 16) ≡ 9 (mod 16) ≡ 1 (mod 16)
5 L to R 1 2001 ≡ 1, 17 (mod 32) ≡ 17 (mod 32) ≡ 1 (mod 32)
6 R to L 1 1985 ≡ 1, 33 (mod 64) ≡ 33 (mod 64) ≡ 1 (mod 64)
7 L to R 1 1985 ≡ 1, 65 (mod 128) ≡ 65 (mod 128) ≡ 1 (mod 128)
8 R to L 1 1921 ≡ 1, 129 (mod 256) ≡ 1 (mod 256) ≡ 129 (mod 256)
9 L to R 129 1921 ≡ 129, 385 (mod 512) ≡ 385 (mod 512) ≡ 129 (mod 512)
10 R to L 129 1665 ≡ 129, 641 (mod 1024) ≡ 129 (mod 1024) ≡ 641 (mod 1024)
11 L to R 641 1665 ≡ 641, 1665 (mod 2048) ≡ 1665 (mod 2048) ≡ 641 (mod 2048)

Since there is only one integer between 1 and 2005 congruent to 641 (mod 2048), then
there is only one locker left open: locker 641.
Notice also that on any pass s, the “class” of lockers which are closed depends on what the
number of the leftmost (on an odd-numbered pass) or rightmost (on an even-numbered
pass) open locker number is congruent to mod 2s.

Consider n = 2005 + 22a, where 22a > 2005, ie. a ≥ 6.
We show that f(n) = f(2005) = 641. (See Solution 2 for a justification of why we might
try these values of n.)
Suppose we were to try to make a table as above to calculate f(n).
Then the first 11 passes in the table would be identical to the table above, except for the
rightmost open number; this number in the new table would be the number above plus
22a.
What will happen after pass 11?
After pass 11, the lockers which are open are lockers with numbers ≡ 641 (mod 2048).
Thus, the leftmost open locker is 641 and the rightmost is 22a + 641.
As the 12th pass starts, the lockers which are still open are those with numbers
≡ 641 or 2689 (mod 212).
Since the rightmost open locker number (22a+641) is congruent to 641 (mod 212), then all
lockers with numbers ≡ 2689 (mod 212) are closed, leaving open only those lockers with
numbers ≡ 641 (mod 212).
So after this 12th pass, the lockers which are open are 641, 641 + 212, 641 + 2(212),
641 + 3(212), . . . , 641 + 22a−12(212) = 641 + 22a.
The number of open lockers is 22a−12 + 1.



2005 Euclid Contest Solutions Page 16

If we can now show that whenever we start with a number of lockers of the form 22c+1, the
last locker remaining open is the leftmost locker, then we will be done, since of the lockers
left open above (22a−12 +1 of them, ie. 2 to an even power plus 1), then the last locker re-
maining open will be the leftmost one, that is locker 641, so f(22a+2005) = 641 = f(2005).

So consider a row of 22c + 1 lockers.
Notice that on any pass, if the number of lockers is odd, then the number of lockers which
will be closed is one-half of one less than the total number of lockers, and the first and
last lockers will be left open.
So on the first pass, there are 22c−1 lockers closed, leaving 22c +1−22c−1 = 22c−1+1 lockers
open, ie. an odd number of lockers open.
On the next pass, there are 22c−2 lockers closed (since there are an odd number of lockers
open to begin), leaving 22c−2 + 1 lockers open.
This continues, until there are 21 + 1 = 3 lockers open just before an even-numbered (ie.
right to left) pass. Thus, the middle of these three lockers will be closed, leaving only the
original leftmost and rightmost lockers open.
On the last pass (an odd-numbered pass from left to right), the rightmost locker will be
closed, leaving only the leftmost locker open.
Therefore, starting with a row of 22c + 1 open lockers, the leftmost locker will be the last
remaining open.

Translating this to the above, we see that the leftmost locker of the 22a−12 + 1 still open
is the last left open, ie. f(22a + 2005) = 641 = f(2005) if a ≥ 6.

Therefore, there are infinitely many positive integers n for which f(n) = f(2005).
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Solution 2
First, we calculate f(n) for n from 1 to 32, to get a feeling for what happens. We obtain
1, 1, 3, 3, 1, 1, 3, 3, 9, 9, 11, 11, 9, 9, 11, 11, 1, 1, 3, 3, 1, 1, 3, 3, 9, 9, 11, 11, 9, 9, 11, 11.
This will help us to establish some patterns.

Next, we establish two recursive formulas for f(n).

First, from our pattern, it looks like f(2m) = f(2m− 1).
Why is this true in general?
Consider a row of 2m lockers.
On the first pass through , Josephine shuts all of the even numbered lockers, leaving open
lockers 1, 3, . . ., 2m− 1.
These are exactly the same open lockers as if she had started with 2m− 1 lockers in total.
Thus, as she starts her second pass from right to left, the process will be the same now
whether she started with 2m lockers or 2m− 1 lockers.
Therefore, f(2m) = f(2m− 1).
This tells us that we need only focus on the values of f(n) where n is odd.

Secondly, we show that f(2m− 1) = 2m + 1− 2f(m).
(It is helpful to connect n = 2m− 1 to a smaller case.)
Why is this formula true?
Starting with 2m− 1 lockers, the lockers left open after the first pass are 1, 3, . . ., 2m− 1,
ie. m lockers in total.
Suppose f(m) = p. As Josephine begins her second pass, which is from right to left, we
can think of this as being like the first pass through a row of m lockers.
Thus, the last open locker will be the pth locker, counting from the right hand end, from
the list 1, 3, . . ., 2m− 1.
The first locker from the right is 2m−1 = 2m+1−2(1), the second is 2m−3 = 2m+1−2(2),
and so on, so the pth locker is 2m + 1− 2p.
Therefore, the final open locker is 2m+1−2p, ie. f(2m−1) = 2m+1−2p = 2m+1−2f(m).

Using these two formulae repeatedly,

f(4k + 1) = f(2(2k + 1)− 1)

= 2(2k + 1) + 1− 2f(2k + 1)

= 4k + 3− 2f(2(k + 1)− 1)

= 4k + 3− 2(2(k + 1) + 1− 2f(k + 1))

= 4k + 3− 2(2k + 3− 2f(k + 1))

= 4f(k + 1)− 3
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and

f(4k + 3) = f(2(2k + 2)− 1)

= 2(2k + 2) + 1− 2f(2k + 2)

= 4k + 5− 2f(2k + 1)

= 4k + 5− 2f(2(k + 1)− 1)

= 4k + 5− 2(2(k + 1) + 1− 2f(k + 1))

= 4k + 5− 2(2k + 3− 2f(k + 1))

= 4f(k + 1)− 1

From our initial list of values of f(n), it appears as if f(n) cannot leave a remainder of 5
or 7 when divided by 8. So we use these recursive relations once more to try to establish
this:

f(8l + 1) = 4f(2l + 1)− 3 (since 8l + 1 = 4(2l) + 1)

= 4(2l + 3− 2f(l + 1))− 3

= 8l + 9− 8f(l + 1)

= 8(l − f(l + 1)) + 9

f(8l + 3) = 4f(2l + 1)− 1 (since 8l + 3 = 4(2l) + 3)

= 4(2l + 3− 2f(l + 1))− 1

= 8l + 11− 8f(l + 1)

= 8(l − f(l + 1)) + 11

Similarly, f(8l + 5) = 8l + 9− 8f(l + 1) and f(8l + 7) = 8l + 11− 8f(l + 1).
Therefore, since any odd positive integer n can be written as 8l+1, 8l+3, 8l+5 or 8l+7,
then for any odd positive integer n, f(n) is either 9 more or 11 more than a multiple of 8.
Therefore, for any odd positive integer n, f(n) cannot be 2005, since 2005 is not 9 more
or 11 more than a multiple of 8.
Thus, for every positive integer n, f(n) 6= 2005, since we only need to consider odd values
of n.

Next, we show that there are infinitely many positive integers n such that f(n) = f(2005).
We do this by looking at the pattern we initially created and conjecturing that

f(2005) = f(2005 + 22a)

if 22a > 2005. (We might guess this by looking at the connection between f(1) and f(3)
with f(5) and f(7) and then f(1) through f(15) with f(17) through f(31). In fact, it
appears to be true that f(m + 22a) = f(m) if 22a > m.)
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Using our formulae from above,

f(2005 + 22a) = 4f(502 + 22a−2)− 3 (2005 + 22a = 4(501 + 22a−2) + 1)
= 4f(501 + 22a−2)− 3
= 4(4f(126 + 22a−4)− 3)− 3 (501 + 22a−2 = 4(125 + 22a−4) + 1)
= 16f(126 + 22a−4)− 15
= 16f(125 + 22a−4)− 15
= 16(4f(32 + 22a−6)− 3)− 15 (125 + 22a−4 = 4(31 + 22a−6) + 1)
= 64f(32 + 22a−6)− 63
= 64f(31 + 22a−6)− 63
= 64(4f(8 + 22a−8)− 1)− 63 (31 + 22a−6 = 4(7 + 22a−8) + 3)
= 256f(8 + 22a−8)− 127
= 256f(7 + 22a−8)− 127
= 256(4f(2 + 22a−10)− 1)− 127 (7 + 22a−8 = 4(1 + 22a−10) + 3)
= 1024f(2 + 22a−10)− 383
= 1024f(1 + 22a−10)− 383

(Notice that we could have removed the powers of 2 from inside the functions and used
this same approach to show that f(2005) = 1024f(1)− 383 = 641.)

But, f(22b + 1) = 1 for every positive integer b.
Why is this true? We can prove this quickly by induction.
For b = 1, we know f(5) = 1.
Assume that the result is true for b = B − 1, for some positive integer B ≥ 2.
Then f(22B + 1) = f(4(22B−2) + 1) = 4f(22B−2 + 1)− 3 = 4(1)− 3 = 1 by our induction
hypothesis.

Therefore, if a ≥ 6, then f(1 + 22a−10) = f(1 + 22(a−5)) = 1 so

f(2005 + 22a) = 1024(1)− 383 = 641 = f(2005)

so there are infinitely many integers n for which f(n) = f(2005).
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Solution 3
We conjecture a formula for f(n) and prove this formula by induction, using the formulae
that we proved in Solution 2.
We start by writing the positive integer n in its binary representation, ie. we write

n = b0 + b1 · 2 + b2 · 22 + · · ·+ b2p−1 · 22p−1 + b2p · 22p

where each of b0, b1, · · · , b2p is 0 or 1 with either b2p = 1, or b2p = 0 and b2p−1 = 1.
Thus, in binary, n is equal to either (b2pb2p−1 · · · b1b0)2 or (b2p−1 · · · b1b0)2.
We then conjecture that if n is odd (which tells us that b0 = 1 for sure), then

f(n) = b0 + b1 · 2 + b3 · 23 + · · ·+ b2p−1 · 22p−1

In other words, we omit the even-numbered powers of 2 from n. Looking at a few exam-
ples: 7 = 4 + 2 + 1, so f(7) = 2 + 1 = 3, 13 = 8 + 4 + 1, so f(13) = 8 + 1 = 9, and
27 = 16 + 8 + 2 + 1, so f(27) = 8 + 2 + 1 = 11.
We already know that if n is even, then f(n) = f(n− 1) (we proved this in Solution 2).

Let’s assume that we’ve proved this formula. (We’ll prove it at the end.)

We can now solve parts (b) and (c) very quickly using our formula.
Are then any values of n such that f(n) = 2005?
Writing 2005 as a sum of powers of 2 (ie. in binary), we get

2005 = 1024 + 512 + 256 + 128 + 64 + 16 + 4 + 1

Since the representation of 2005 does not use only odd-numbered powers of 2, then there
is no n for which f(n) = 2005.

Lastly, we need to prove that there are infinitely many positive integers n for which
f(n) = f(2005).
To do this, we note that if n = 2005 + 22a for some a ≥ 6, then the last 11 binary digits
of n agree with those of 2005 and the only 1s in the representation of n = 2005 + 22a in
positions corresponding to odd-numbered powers of 2 come from the 2005 portion (since
the extra “1” from 22a corresponds to an even-numbered power of 2).
Therefore, since we calculate f(2005 + 22a) by looking at only the odd-numbered powers
of 2, then f(2005 + 22a) = f(2005) for all integers a ≥ 6.
Therefore, there are infinitely many positive integers n for which f(n) = f(2005).

We now must prove that this formula is true. We use strong induction.
Looking at the list in Solution 2, we can quickly see that the result holds for all odd values
of n with n ≤ 31. (We only need to establish this for a couple of small values of n to serve
as base cases.)
Assume that the result holds for all odd positive integers n up to n = N − 2 for some odd
positive integer N .
Consider n = N .
Case 1: N = 4q + 1
Here we can write

N = 1 + b2 · 22 + · · ·+ b2p−1 · 22p−1 + b2p · 22p
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and so
q = b2 + b3 · 2 + · · ·+ b2p−1 · 22p−3 + b2p · 22p−2

Note that q < N − 2 since 4q + 1 = N , so q = 1
4
N − 1

4
.

From our formulae in Solution 2, f(N) = f(4q + 1) = 4f(q + 1)− 3.
If q is even, then b2 = 0 and so q+1 is odd and q+1 = 1+b3 ·2+· · ·+b2p−1 ·22p−3+b2p ·22p−2.
If q is odd, then b2 = 1, so q = 1 + b3 · 2 + · · ·+ b2p−1 · 22p−3 + b2p · 22p−2 and q + 1 is even,
so f(q + 1) = f(q).
In either case,

f(q +1) = f(1+ b3 · 2+ · · ·+ b2p−1 · 22p−3 + b2p · 22p−2) = 1 + b3 · 2 + b5 · 23 + · · · b2p−1 · 22p−3

by our Induction Hypothesis.
Therefore,

f(N) = 4(1 + b3 · 2 + b5 · 23 + · · · b2p−1 · 22p−3)− 3 = 1 + b3 · 23 + b5 · 25 + · · ·+ b2p−1 · 22p−1

as we would like, since b1 = 0.

Case 2: N = 4q + 3
Here we can write

N = 1 + 2 + b2 · 22 + · · ·+ b2p−1 · 22p−1 + b2p · 22p

and so
q = b2 + b3 · 2 + · · ·+ b2p−1 · 22p−3 + b2p · 22p−2

Note that q < N − 2 since 4q + 3 = N .
From our formulae in Solution 2, f(N) = f(4q + 3) = 4f(q + 1)− 1.
If q is even, then b2 = 0 and so q+1 is odd and q+1 = 1+b3 ·2+· · ·+b2p−1 ·22p−3+b2p ·22p−2.
If q is odd, then b2 = 1, so q = 1 + b3 · 2 + · · ·+ b2p−1 · 22p−3 + b2p · 22p−2 and q + 1 is even,
so f(q + 1) = f(q).
In either case,

f(q + 1) = f(1+ b3 · 2 + · · ·+ b2p−1 · 22p−3 + b2p · 22p−2) = 1 + b3 · 2 + b5 · 23 + · · · b2p−1 · 22p−3

by our Induction Hypothesis.
Therefore,

f(N) = 4(1+ b3 ·2+ b5 ·23 + · · · b2p−1 ·22p−3)−1 = 1+2+ ·b3 ·23 + b5 ·25 + · · ·+ b2p−1 ·22p−1

as we would like.

Therefore, by strong induction, our formula holds. This complete our proof.
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Solution 4
First, we note that if n = 2k is even, then f(n) = f(2k) = f(2k − 1) = f(n − 1). See
Solution 2 for this justification.
Therefore, we only need to look for odd values of n in parts (b) and (c).

Write the number n in binary as n = (b2pb2p−1 · · · b2b11)2, where each digit is either 0
or 1. Here, we allow the possibility of b2p = 0 if b2p−1 = 1. Since n is odd, then the last
digit must be 1, as shown in the representation of n.
We conjecture that if n = (b2pb2p−1 · · · b2b11)2, then f(n) = (b2p−10b2p−30 · · · b30b11)2, ie.
we take the binary representation of n and make every digit corresponding to an even
power of 2 into a 0.

Assume that we have proven this formula. (We will prove it below.) We can now quickly
solve (b) and (c).
Is there an integer n such that f(n) = 2005?
Since 2005 = 1024 + 512 + 256 + 128 + 64 + 16 + 4 + 1, then 2005 = (11111010101)2.
Thus, the binary representation of 2005 does not have only 0’s in the digits corresponding
to even powers of 2, so 2005 cannot be f(n) for any n.

Why are there infinitely many positive integers n for which f(n) = 2005?
Consider n = 2005 + 22a for some positive integer n, where 22a > 2005, ie. n ≥ 6.
Then the binary representation of n is n = (10 · · · 011111010101)2, where the leading 1 is
in a digit corresponding to an even power of 2, and so is zeroed when f is applied.
Therefore, f(n) = (00 · · · 001010000001)2 = (1010000001)2 = f(2005).
Thus, there are infinitely many positive integers n for which f(n) = f(2005).

Lastly, we must prove that our formula is true.
Write the numbers from 1 to n in binary in a list from top to bottom:

... 0 0 0 0 1

... 0 0 0 1 0

... 0 0 0 1 1

... 0 0 1 0 0

... 0 0 1 0 1

... 0 0 1 1 0

... 0 0 1 1 1

... 0 1 0 0 0
...

... b4 b3 b2 b1 1

On odd-numbered passes through the lockers, Josephine moves from left to right, cor-
responding to downwards in this list. On even-numbered passes through the lockers,
Josephine moves from right to left, corresponding to upwards in this list.

On the first pass, we remove every other number from this list, moving downwards. Thus,
we remove every even number, or all of those ≡ 0 (mod 2), or all of those with 0th binary
digit of 0.
Therefore, after the first pass, only those with a 0th binary digit of 1 remain, and the 1st
binary digit (ie. corresponding to 21) alternates between 0 and 1, since the numbers in the
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list alternate between 1 (mod 4) and 3 (mod 4).

On the second pass through the list, which is upwards, we remove every other remaining
number. Since the numbers remaining the list alternate between ending in 01 and 11, and
we do not remove the last number, then we leave all those numbers ending in b11.
(Since we are removing every fourth number from the original list, the final two binary
digits of the remaining numbers should all be the same.)
What remains in our list after two passes? The numbers which remain are all congruent
to the same thing (an odd number) modulo 4.

Consider the third pass.
Since one out of every four of the original numbers remains and all of the remaining num-
bers are odd, then the first number still in the list is less than 4.
Since every number remaining in the list is congruent to the same thing modulo 4, then
the last three digits alternate 0b11 and 1b11 (ie. the last two binary digits are the same).
Since the first number is less than 4, then it ends in 0b11.
Since we now remove every other number remaining, then we remove all those numbers
with last three binary digits 1b11, leaving only those with last three digits 0b11. Thus, all
remaining numbers are congruent to the same number modulo 8.
What is the last number remaining in the list?
If the original last number in the list was ...b30b11 (ie. b2 = 0), then this number still
remains.
If the last number before the third pass was ...b31b11 (ie. b2 = 1), then the second last
remaining number would be (...b31b11)2−4 = (...b30b11)2, and it is this second last number
which remains. In either case, the last remaining number is ...b30b11.

Consider now a general even-numbered pass (say, pass number 2m moving through the
list from bottom to top).
The last number in the list (ie. the first encountered) will be ...b2m−10b2m−30 · · · b30b11
and the numbers in the list will alternate between ending ...10b2m−30 · · · b30b11 and ending
...00b2m−30 · · · b30b11 (since every 22m−1th number from the original list remains).
The last number in the list will not be removed, so we will remove all numbers not agreeing
with the last number in the (2m − 1)th digit, ie. we are left with all numbers ending in
...b2m−10b2m−30 · · · b30b11. This leaves us with every 22mth number from our original list.
Since all remaining numbers are odd, then the smallest number remaining in the list is
smaller than 22m, so ends in ...0b2m−10b2m−30 · · · b30b11.

On the next (odd-numbered pass), the list begins with all numbers ending in either
...0b2m−10b2m−30 · · · b30b11 or ...1b2m−10b2m−30 · · · b30b11.
Since the first number encountered ends in ...0b2m−10b2m−30 · · · b30b11, then we remove all
numbers ending in ...1b2m−10b2m−30 · · · b30b11, leaving only those ending in
...0b2m−10b2m−30 · · · b30b11, ie. every 22m+1th number from the original list.
Just before this pass, the largest number remaining ended in
...b2m+1b2mb2m−10b2m−30 · · · b30b11.
After this pass, the largest number remaining will end in ...b2m+10b2m−10b2m−30 · · · b30b11,
by the same argument we used in the third pass.

Thus, the process continues as expected, and the final number remaining in the list will
be b2p−10b2p−30 · · · b30b11, so f(n) = (b2p−10b2p−30 · · · b30b11)2


