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1. (a) Evaluating,

√
16 +

√
9√

16 + 9
=

4 + 3√
25

=
7

5
.

(b) Since the sum of the angles in a triangle is 180◦, then (x − 10)◦ + (x + 10)◦ + x◦ = 180◦

or (x− 10) + (x+ 10) + x = 180.
Thus, 3x = 180 and so x = 60.

(c) Suppose Bart earns $x per hour. In 4 hours, he earns 4× $x = $4x.
Then Lisa earns $2x per hour. In 6 hours, she earns 6× $2x = $12x.
Since they earn $200 in total, then 4x+ 12x = 200 or 16x = 200.
Therefore, x = 12.5.
Finally, since 2x = 25, then Lisa earns $25 per hour.

2. (a) The perimeter of the region includes the diameter and the semi-circle.
Since the radius of the region is 10, then the length of its diameter is 20.
Since the radius of the region is 10, then the circumference of an entire circle with this
radius is 2π(10) = 20π, so the arc length of the semi-circle is one-half of 20π, or 10π.
Therefore, the perimeter of the region is 10π + 20.

(b) The x-intercepts of the parabola with equation y = 10(x+ 2)(x− 5) are −2 and 5.
Since the line segment, PQ, joining these points is horizontal, then its length is the
difference in the intercepts, or 5− (−2) = 7.

(c) The slope of the line joining the points C(0, 60) and D(30, 0) is
60− 0

0− 30
=

60

−30
= −2.

Since this line passes through C(0, 60), then the y-intercept of the line is 60, and so an
equation of the line is y = −2x+ 60.
We thus want to find the point of intersection, E, between the lines with equations
y = −2x+ 60 and y = 2x.
Equating y-coordinates, we obtain −2x+ 60 = 2x or 4x = 60, and so x = 15.
Substituting x = 15 into the equation y = 2x, we obtain y = 2(15) = 30.
Therefore, the coordinates of E are (15, 30).

3. (a) We note that BD = BC + CD and that BC = 20 cm, so we
need to determine CD.
We draw a line from C to P on FD so that CP is perpendicular
to DF .
Since AC and DF are parallel, then CP is also perpendicular to
AC.
The distance between AC and DF is 4 cm, so CP = 4 cm.
Since 4ABC is isosceles and right-angled, then ∠ACB = 45◦.

A

DB C

EF

20
4

P

Thus, ∠PCD = 180◦ − ∠ACB − ∠PCA = 180◦ − 45◦ − 90◦ = 45◦.
Since 4CPD is right-angled at P and ∠PCD = 45◦, then 4CPD is also an isosceles
right-angled triangle.
Therefore, CD =

√
2CP = 4

√
2 cm.

Finally, BD = BC + CD = (20 + 4
√

2) cm.
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(b) Manipulating the given equation and noting that x 6= 0 and x 6= −1
2

since neither denom-
inator can equal 0, we obtain

x2 + x+ 4

2x+ 1
=

4

x

x(x2 + x+ 4) = 4(2x+ 1)

x3 + x2 + 4x = 8x+ 4

x3 + x2 − 4x− 4 = 0

x2(x+ 1)− 4(x+ 1) = 0

(x+ 1)(x2 − 4) = 0

(x+ 1)(x− 2)(x+ 2) = 0

Therefore, x = −1 or x = 2 or x = −2. We can check by substitution that each satisfies
the original equation.

4. (a) Solution 1
Since 900 = 302 and 30 = 2× 3× 5, then 900 = 223252.
The positive divisors of 900 are those integers of the form d = 2a3b5c, where each of a, b, c
is 0, 1 or 2.
For d to be a perfect square, the exponent on each prime factor in the prime factorization
of d must be even.
Thus, for d to be a perfect square, each of a, b, c must be 0 or 2.
There are two possibilities for each of a, b, c so 2× 2× 2 = 8 possibilities for d.
These are 203050 = 1, 223050 = 4, 203250 = 9, 203052 = 25, 223250 = 36, 223052 = 100,
203252 = 225, and 223252 = 900.
Thus, 8 of the positive divisors of 900 are perfect squares.

Solution 2
The positive divisors of 900 are

1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 25, 30, 36, 45, 50, 60, 75, 90, 100, 150, 180, 225, 300, 450, 900

Of these, 1, 4, 9, 25, 36, 100, 225, and 900 are perfect squares (12, 22, 32, 52, 62, 102, 152, 302,
respectively).
Thus, 8 of the positive divisors of 900 are perfect squares.

(b) In isosceles triangle ABC, ∠ABC = ∠ACB, so the sides opposite these angles (AC and
AB, respectively) are equal in length.
Since the vertices of the triangle are A(k, 3), B(3, 1) and C(6, k), then we obtain

AC = AB√
(k − 6)2 + (3− k)2 =

√
(k − 3)2 + (3− 1)2

(k − 6)2 + (3− k)2 = (k − 3)2 + (3− 1)2

(k − 6)2 + (k − 3)2 = (k − 3)2 + 22

(k − 6)2 = 4

Thus, k − 6 = 2 or k − 6 = −2, and so k = 8 or k = 4.
We can check by substitution that each satisfies the original equation.



2014 Euclid Contest Solutions Page 4

5. (a) Bottle A contains 40 g of which 10% is acid.
Thus, it contains 0.1× 40 = 4 g of acid and 40− 4 = 36 g of water.
Bottle B contains 50 g of which 20% is acid.
Thus, it contains 0.2× 50 = 10 g of acid and 50− 10 = 40 g of water.
Bottle C contains 50 g of which 30% is acid.
Thus, it contains 0.3× 50 = 15 g of acid and 50− 15 = 35 g of water.
In total, the three bottles contain 40 + 50 + 50 = 140 g, of which 4 + 10 + 15 = 29 g is
acid and 140− 29 = 111 g is water.
The new mixture has mass 60 g of which 25% is acid.
Thus, it contains 0.25× 60 = 15 g of acid and 60− 15 = 45 g of water.
Since the total mass in the three bottles is initially 140 g and the new mixture has mass
60 g, then the remaining contents have mass 140− 60 = 80 g.
Since the total mass of acid in the three bottles is initially 29 g and the acid in the new
mixture has mass 15 g, then the acid in the remaining contents has mass 29− 15 = 14 g.

This remaining mixture is thus
14 g

80 g
× 100% = 17.5% acid.

(b) Since 3x+ 4y = 10, then 4y = 10− 3x.
Therefore, when 3x+ 4y = 10,

x2 + 16y2 = x2 + (4y)2

= x2 + (10− 3x)2

= x2 + (9x2 − 60x+ 100)

= 10x2 − 60x+ 100

= 10(x2 − 6x+ 10)

= 10(x2 − 6x+ 9 + 1)

= 10((x− 3)2 + 1)

= 10(x− 3)2 + 10

Since (x− 3)2 ≥ 0, then the minimum possible value of 10(x− 3)2 + 10 is 10(0) + 10 = 10.
This occurs when (x− 3)2 = 0 or x = 3.
Therefore, the minimum possible value of x2 + 16y2 when 3x+ 4y = 10 is 10.

6. (a) Solution 1
Suppose that the bag contains g gold balls.
We assume that Feridun reaches into the bag and removes the two balls one after the
other.
There are 40 possible balls that he could remove first and then 39 balls that he could
remove second. In total, there are 40(39) pairs of balls that he could choose in this way.
If he removes 2 gold balls, then there are g possible balls that he could remove first and
then g − 1 balls that he could remove second. In total, there are g(g − 1) pairs of gold
balls that he could remove.

We are told that the probability of removing 2 gold balls is
5

12
.

Since there are 40(39) total pairs of balls that can be chosen and g(g − 1) pairs of

gold balls that can be chosen in this way, then
g(g − 1)

40(39)
=

5

12
which is equivalent to

g(g − 1) =
5

12
(40)(39) = 650.
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Therefore, g2 − g − 650 = 0 or (g − 26)(g + 25) = 0, and so g = 26 or g = −25.
Since g > 0, then g = 26, so there are 26 gold balls in the bag.

Solution 2
Suppose that the bag contains g gold balls.
We assume that Feridun reaches into the bag and removes the two balls together.

Since there are 40 balls in the bag, there are

(
40

2

)
pairs of balls that he could choose in

this way.

Since there are g gold balls in the bag, then there are

(
g

2

)
pairs of gold balls that he could

choose in this way.

We are told that the probability of removing 2 gold balls is
5

12
.

Since there are

(
40

2

)
pairs in total that can be chosen and

(
g

2

)
pairs of gold balls that

can be chosen in this way, then

(
g

2

)
(

40

2

) =
5

12
which is equivalent to

(
g

2

)
=

5

12

(
40

2

)
.

Since

(
n

2

)
=
n(n− 1)

2
, then this equation is equivalent to

g(g − 1)

2
=

5

12

40(39)

2
= 325.

Therefore, g(g − 1) = 650 or g2 − g − 650 = 0 or (g − 26)(g + 25) = 0, and so g = 26 or
g = −25.
Since g > 0, then g = 26, so there are 26 gold balls in the bag.

(b) Suppose that the first term in the geometric sequence is t1 = a and the common ratio in
the sequence is r.
Then the sequence, which has n terms, is a, ar, ar2, ar3, . . . , arn−1.
In general, the kth term is tk = ark−1; in particular, the nth term is tn = arn−1.
Since t1tn = 3, then a · arn−1 = 3 or a2rn−1 = 3.
Since t1t2 · · · tn−1tn = 59 049, then

(a)(ar) · · · (arn−2)(arn−1) = 59 049

anrr2 · · · rn−2rn−1 = 59 049 (since there are n factors of a on the left side)

anr1+2+···+(n−2)+(n−1) = 59 049

anr
1
2
(n−1)(n) = 59 049

since 1 + 2 + · · ·+ (n− 2) + (n− 1) = 1
2
(n− 1)(n).

Since a2rn−1 = 3, then (a2rn−1)n = 3n or a2nr(n−1)(n) = 3n.

Since anr
1
2
(n−1)(n) = 59 049, then

(
anr

1
2
(n−1)(n)

)2
= 59 0492 or a2nr(n−1)(n) = 59 0492.

Since the left sides of these equations are the same, then 3n = 59 0492.
Now

59 049 = 3(19 683) = 32(6561) = 33(2187) = 34(729) = 35(243) = 36(81) = 3634 = 310

Since 59 049 = 310, then 59 0492 = 320 and so 3n = 320, which gives n = 20.
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7. (a) Let a = x− 2013 and let b = y − 2014.

The given equation becomes
ab

a2 + b2
= −1

2
, which is equivalent to 2ab = −a2 − b2 and

a2 + 2ab+ b2 = 0.
This is equivalent to (a+ b)2 = 0 which is equivalent to a+ b = 0.
Since a = x− 2013 and b = y − 2014, then x− 2013 + y − 2014 = 0 or x+ y = 4027.

(b) Let a = log10 x.
Then (log10 x)log10(log10 x) = 10 000 becomes alog10 a = 104.
Taking the base 10 logarithm of both sides and using the fact that log10(a

b) = b log10 a,
we obtain (log10 a)(log10 a) = 4 or (log10 a)2 = 4.
Therefore, log10 a = ±2 and so log10(log10 x) = ±2.

If log10(log10 x) = 2, then log10 x = 102 = 100 and so x = 10100.
If log10(log10 x) = −2, then log10 x = 10−2 = 1

100
and so x = 101/100.

Therefore, x = 10100 or x = 101/100.

We check these answers in the original equation.
If x = 10100, then log10 x = 100.
Thus, (log10 x)log10(log10 x) = 100log10 100 = 1002 = 10 000.
If x = 101/100, then log10 x = 1/100 = 10−2.
Thus, (log10 x)log10(log10 x) = (10−2)log10(10

−2) = (10−2)−2 = 104 = 10 000.

8. (a) We use the cosine law in 4ABD to determine the length of BD:

BD2 = AB2 + AD2 − 2(AB)(AD) cos(∠BAD)

We are given that AB = 75 and AD = 20, so we need to determine cos(∠BAD).
Now

cos(∠BAD) = cos(∠BAC + ∠EAD)

= cos(∠BAC) cos(∠EAD)− sin(∠BAC) sin(∠EAD)

=
AC

AB

AD

AE
− BC

AB

ED

AE

since 4ABC and 4ADE are right-angled.
Since AB = 75 and BC = 21, then by the Pythagorean Theorem,

AC =
√
AB2 −BC2 =

√
752 − 212 =

√
5625− 441 =

√
5184 = 72

since AC > 0.
Since AC = 72 and CE = 47, then AE = AC − CE = 25.
Since AE = 25 and AD = 20, then by the Pythagorean Theorem,

ED =
√
AE2 − AD2 =

√
252 − 202 =

√
625− 400 =

√
225 = 15

since ED > 0.
Therefore,

cos(∠BAD) =
AC

AB

AD

AE
− BC

AB

ED

AE
=

72

75

20

25
− 21

75

15

25
=

1440− 315

75(25)
=

1125

75(25)
=

45

75
=

3

5
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Finally,

BD2 = AB2 + AD2 − 2(AB)(AD) cos(∠BAD)

= 752 + 202 − 2(75)(20)(3
5
)

= 5625 + 400− 1800

= 4225

Since BD > 0, then BD =
√

4225 = 65, as required.

(b) Solution 1
Consider 4BCE and 4ACD.

A

B C D

E

M

N

Since 4ABC is equilateral, then BC = AC.
Since 4ECD is equilateral, then CE = CD.
Since BCD is a straight line and ∠ECD = 60◦, then ∠BCE = 180◦ − ∠ECD = 120◦.
Since BCD is a straight line and ∠BCA = 60◦, then ∠ACD = 180◦ − ∠BCA = 120◦.
Therefore, 4BCE is congruent to 4ACD (“side-angle-side”).
Since 4BCE and 4ACD are congruent and CM and CN are line segments drawn from
the corresponding vertex (C in both triangles) to the midpoint of the opposite side, then
CM = CN .
Since ∠ECD = 60◦, then 4ACD can be obtained by rotating 4BCE through an angle
of 60◦ clockwise about C.
This means that after this 60◦ rotation, CM coincides with CN .
In other words, ∠MCN = 60◦.
But since CM = CN and ∠MCN = 60◦, then

∠CMN = ∠CNM = 1
2
(180◦ − ∠MCN) = 60◦

Therefore, 4MNC is equilateral, as required.



2014 Euclid Contest Solutions Page 8

Solution 2
We prove that 4MNC is equilateral by introducing a coordinate system.
Suppose that C is at the origin (0, 0) with BCD along the x-axis, with B having coordi-
nates (−4b, 0) and D having coordinates (4d, 0) for some real numbers b, d > 0.
Drop a perpendicular from E to P on CD.

A

B(– 4b, 0) C D(4d, 0)

E

M
N

y

xP

Since 4ECD is equilateral, then P is the midpoint of CD.
Since C has coordinates (0, 0) and D has coordinates (4d, 0), then the coordinates of P
are (2d, 0).
Since 4ECD is equilateral, then ∠ECD = 60◦ and so 4EPC is a 30◦-60◦-90◦ triangle
and so EP =

√
3CP = 2

√
3d.

Therefore, the coordinates of E are (2d, 2
√

3d).
In a similar way, we can show that the coordinates of A are (−2b, 2

√
3b).

Now M is the midpoint of B(−4b, 0) and E(2d, 2
√

3d), so the coordinates of M are(
1
2
(−4b+ 2d), 1

2
(0 + 2

√
3d)
)

or (−2b+ d,
√

3d).

Also, N is the midpoint of A(−2b, 2
√

3b) and D(4d, 0), so the coordinates of N are(
1
2
(−2b+ 4d), 1

2
(2
√

3b+ 0)
)

or (−b+ 2d,
√

3b).
To show that 4MNC is equilateral, we show that CM = CN = MN or equivalently that
CM2 = CN2 = MN2:

CM2 = (−2b+ d− 0)2 + (
√

3d− 0)2

= (−2b+ d)2 + (
√

3d)2

= 4b2 − 4bd+ d2 + 3d2

= 4b2 − 4bd+ 4d2

CN2 = (−b+ 2d− 0)2 + (
√

3b− 0)2

= (−b+ 2d)2 + (
√

3b)2

= b2 − 4bd+ 4d2 + 3b2

= 4b2 − 4bd+ 4d2

MN2 = ((−2b+ d)− (−b+ 2d))2 + (
√

3d−
√

3b)2

= (−b− d)2 + 3(d− b)2

= b2 + 2bd+ d2 + 3d2 − 6bd+ 3b2

= 4b2 − 4bd+ 4d2

Therefore, CM2 = CN2 = MN2 and so 4MNC is equilateral, as required.
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9. (a) Let S = sin6 1◦ + sin6 2◦ + sin6 3◦ + · · ·+ sin6 87◦ + sin6 88◦ + sin6 89◦.
Since sin θ = cos(90◦ − θ), then sin6 θ = cos6(90◦ − θ), and so

S = sin6 1◦ + sin6 2◦ + · · ·+ sin6 44◦ + sin6 45◦

+ cos6(90◦ − 46◦) + cos6(90◦ − 47◦) + · · ·+ cos6(90◦ − 89◦)

= sin6 1◦ + sin6 2◦ + · · ·+ sin6 44◦ + sin6 45◦ + cos6 44◦ + cos6 43◦ + · · ·+ cos6 1◦

= (sin6 1◦ + cos6 1◦) + (sin6 2◦ + cos6 2◦) + · · ·+ (sin6 44◦ + cos6 44◦) + sin6 45◦

Since sin 45◦ = 1√
2
, then sin6 45◦ = 1

23
= 1

8
.

Also, since
x3 + y3 = (x+ y)(x2 − xy + y2) = (x+ y)((x+ y)2 − 3xy)

then substituting x = sin2 θ and y = cos2 θ, we obtain

x3 + y3 = (x+ y)((x+ y)2 − 3xy)

sin6 θ + cos6 θ = (sin2 θ + cos2 θ)((sin2 θ + cos2 θ)2 − 3 sin2 θ cos2 θ)

sin6 θ + cos6 θ = 1(1− 3 sin2 θ cos2 θ)

since sin2 θ + cos2 θ = 1.
Therefore,

S = (sin6 1◦ + cos6 1◦) + (sin6 2◦ + cos6 2◦) + · · ·+ (sin6 44◦ + cos6 44◦) + sin6 45◦

= (1− 3 sin2 1◦ cos2 1◦) + (1− 3 sin2 2◦ cos2 2◦) + · · ·+ (1− 3 sin2 44◦ cos2 44◦) + 1
8

= 44− (3 sin2 1◦ cos2 1◦ + 3 sin2 2◦ cos2 2◦ + · · ·+ 3 sin2 44◦ cos2 44◦) + 1
8

= 353
8
− 3

4
(4 sin2 1◦ cos2 1◦ + 4 sin2 2◦ cos2 2◦ + · · ·+ 4 sin2 44◦ cos2 44◦)

Since sin 2θ = 2 sin θ cos θ, then 4 sin2 θ cos2 θ = sin2 2θ, which gives

S = 353
8
− 3

4
(4 sin2 1◦ cos2 1◦ + 4 sin2 2◦ cos2 2◦ + · · ·+ 4 sin2 44◦ cos2 44◦)

= 353
8
− 3

4
(sin2 2◦ + sin2 4◦ + · · ·+ sin2 88◦)

= 353
8
− 3

4
(sin2 2◦ + sin2 4◦ + · · ·+ sin2 44◦ + sin2 46◦ + · · ·+ sin2 86◦ + sin2 88◦)

= 353
8
− 3

4
(sin2 2◦ + sin2 4◦ + · · ·+ sin2 44◦ +

cos2(90◦ − 46◦) + · · ·+ cos2(90◦ − 86◦) + cos2(90◦ − 88◦))

= 353
8
− 3

4
(sin2 2◦ + sin2 4◦ + · · ·+ sin2 44◦ + cos2 44◦ + · · ·+ cos2 4◦ + cos2 2◦)

= 353
8
− 3

4
((sin2 2◦ + cos2 2◦) + (sin2 4◦ + cos2 4◦) + · · ·+ (sin2 44◦ + cos2 44◦))

= 353
8
− 3

4
(22) (since sin2 θ + cos2 θ = 1)

= 353
8
− 132

8

= 221
8

Therefore, since S =
m

n
, then m = 221 and n = 8 satisfy the required equation.
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(b) First, we prove that f(n) =
n(n+ 1)(n+ 2)(n+ 3)

24
in two different ways.

Method 1
If an n-digit integer has digits with a sum of 5, then there are several possibilities for the
combination of non-zero digits used:

5 4, 1 3, 2 3, 1, 1 2, 2, 1 2, 1, 1, 1 1, 1, 1, 1, 1

We count the number of possible integers in each case by determining the number of
arrangements of the non-zero digits; we call the number of ways of doing this a. (For
example, the digits 4 and 1 can be arranged as 4 1 or 1 4.) We then place the leftmost
digit in such an arrangement as the leftmost digit of the n-digit integer (which must be non-
zero) and choose the positions for the remaining non-zero digits among the remaining n−1
positions; we call the number of ways of doing this b. (For example, for the arrangement
1 4, the digit 1 is in the leftmost position and the digit 4 can be in any of the remaining
n− 1 positions.) We fill the rest of the positions with 0s. The number of possible integers
in each case will be ab, since this method will create all such integers and for each of the
a arrangements of the non-zero digits, there will be b ways of arranging the digits after
the first one. We make a chart to summarize the cases, expanding each total and writing
it as a fraction with denominator 24:

Case a b ab (expanded)

5 1 1 1 =
24

24

4, 1 2 (n− 1) 2(n− 1) =
48n− 48

24

3, 2 2 (n− 1) 2(n− 1) =
48n− 48

24

3, 1, 1 3

(
n− 1

2

)
3

(
n− 1

2

)
=

36n2 − 108n+ 72

24

2, 2, 1 3

(
n− 1

2

)
3

(
n− 1

2

)
=

36n2 − 108n+ 72

24

2, 1, 1, 1 4

(
n− 1

3

)
4

(
n− 1

3

)
=

16n3 − 96n2 + 176n− 96

24

1, 1, 1, 1, 1 1

(
n− 1

4

) (
n− 1

4

)
=
n4 − 10n3 + 35n2 − 50n+ 24

24

(Note that in the second and third cases we need n ≥ 2, in the fourth and fifth cases we
need n ≥ 3, in the sixth case we need n ≥ 4, and the seventh case we need n ≥ 5. In each
case, though, the given formula works for smaller positive values of n since it is equal to
0 in each case. Note also that we say b = 1 in the first case since there is exactly 1 way of
placing 0s in all of the remaining n− 1 positions.)
f(n) is then the sum of the expressions in the last column of this table, and so

f(n) =
n4 + 6n3 + 11n2 + 6n

24
=
n(n+ 1)(n+ 2)(n+ 3)

24

as required.

Method 2
First, we create a correspondence between each integer with n digits and whose digits have
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a sum of 5 and an arrangement of five 1s and (n− 1) Xs that begins with a 1.
We can then count these integers by counting the arrangements.
Starting with such an integer, we write down an arrangement of the above type using the
following rule:

The number of 1s to the left of the first X is the first digit of the number, the
number of 1s between the first X and second X is the second digit of the number,
and so on, with the number of 1s to the right of the (n− 1)st X representing the
nth digit of the number.

For example, the integer 1010020001 would correspond to 1XX1XXX11XXXX1.
In this way, each such integer gives an arrangement of the above type.
Similarly, each arrangement of this type can be associated back to a unique integer with
the required properties by counting the number of 1s before the first X and writing this
down as the leftmost digit, counting the number of 1s between the first and second Xs and
writing this down as the second digit, and so on. Since a total of five 1s are used, then
each arrangement corresponds with an integer with n digits whose digits have a sum of 5.
Therefore, there is a one-to-one correspondence between the integers and arrangements
with the desired properties.
Thus, f(n), which equals the number of such integers, also equals the number of such
arrangements.
To count the number of such arrangements, we note that there are four 1s and n − 1 Xs
to arrange in the final 4 + (n− 1) = n+ 3 positions, since the first position is occupied by
a 1.

There are

(
n+ 3

4

)
ways to choose the positions of the remaining four 1s, and so

(
n+ 3

4

)
arrangements.

Thus, f(n) =

(
n+ 3

4

)
=

(n+ 3)!

4!(n− 1)!
=

(n+ 3)(n+ 2)(n+ 1)(n)

4!
=
n(n+ 1)(n+ 2)(n+ 3)

24
.

Next, we need to determine the positive integers n between 1 and 2014, inclusive, for which
the units digit of f(n) is 1.

Now f(n) =
n(n+ 1)(n+ 2)(n+ 3)

24
is an integer for all positive integers n, since it is

counting the number of things with a certain property.
If the units digit of n is 0 or 5, then n is a multiple of 5.
If the units digit of n is 2 or 7, then n+ 3 is a multiple of 5.
If the units digit of n is 3 or 8, then n+ 2 is a multiple of 5.
If the units digit of n is 4 or 9, then n+ 1 is a multiple of 5.
Thus, if the units digit of n is 0, 2, 3, 4, 5, 7, 8, or 9, then n(n + 1)(n + 2)(n + 3)

is a multiple of 5 and so f(n) =
n(n+ 1)(n+ 2)(n+ 3)

24
is a multiple of 5, since the

denominator contains no factors of 5 that can divide the factor from the numerator.
Therefore, if the units digit of n is 0, 2, 3, 4, 5, 7, 8, or 9, then f(n) is divisible by 5, and
so cannot have a units digit of 1.

So we consider the cases where n has a units digit of 1 or of 6; these are the only possible
values of n for which f(n) can have a units digit of 1.

We note that 3f(n) =
n(n+ 1)(n+ 2)(n+ 3)

8
, which is a positive integer for all positive

integers n.
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Also, we note that if f(n) has units digit 1, then 3f(n) has units digit 3, and if 3f(n) has
units digit 3, then f(n) must have units digit 1.
Therefore, determining the values of n for which f(n) has units digit 1 is equivalent to

determining the values of n for which
n(n+ 1)(n+ 2)(n+ 3)

8
has units digit 3.

We consider the integers n in groups of 40. (Intuitively, we do this because the problem
seems to involve multiples of 5 and multiples of 8, and 5× 8 = 40.)
If n has units digit 1, then n = 40k + 1 or n = 40k + 11 or n = 40k + 21 or n = 40k + 31
for some integer k ≥ 0.
If n has units digit 6, then n = 40k + 6 or n = 40k + 16 or n = 40k + 26 or n = 40k + 36
for some integer k ≥ 0.

If n = 40k + 1, then

3f(n) =
n(n+ 1)(n+ 2)(n+ 3)

8

=
(40k + 1)(40k + 2)(40k + 3)(40k + 4)

8
= (40k + 1)(20k + 1)(40k + 3)(10k + 1)

The units digit of 40k + 1 is 1, the units digit of 20k + 1 is 1, the units digit of 40k + 3 is
3, and the units digit of 10k + 1 is 1, so the units digit of the product is the units digit of
(1)(1)(3)(1) or 3.
In a similar way, we treat the remaining seven cases and summarize all eight cases in a
chart:

n 3f(n) simplified Units digit of 3f(n)

40k + 1 (40k + 1)(20k + 1)(40k + 3)(10k + 1) 3

40k + 11 (40k + 11)(10k + 3)(40k + 13)(20k + 7) 3

40k + 21 (40k + 21)(20k + 11)(40k + 23)(10k + 6) 8

40k + 31 (40k + 31)(10k + 8)(40k + 33)(20k + 17) 8

40k + 6 (20k + 3)(40k + 7)(10k + 2)(40k + 9) 8

40k + 16 (10k + 4)(40k + 17)(20k + 9)(40k + 19) 8

40k + 26 (20k + 13)(40k + 27)(10k + 7)(40k + 29) 3

40k + 36 (10k + 9)(40k + 37)(20k + 19)(40k + 39) 3

(Note that, for example, when n = 40k + 16, the simplified version of 3f(n) is
(10k + 4)(40k + 17)(20k + 9)(40k + 19), so the units digit of 3f(n) is the units digit
of (4)(7)(9)(9) which is the units digit of 2268, or 8.)

Therefore, f(n) has units digit 1 whenever n = 40k + 1 or n = 40k + 11 or n = 40k + 26
or n = 40k + 36 for some integer k ≥ 0.
There are 4 such integers n between each pair of consecutive multiples of 40.
Since 2000 = 50 × 40, then 2000 is the 50th multiple of 40, so there are 50 × 4 = 200
integers n less than 2000 for which the units digit of f(n) is 1.
Between 2000 and 2014, inclusive, there are two additional integers: n = 40(50)+1 = 2001
and n = 40(50) + 11 = 2011.
In total, 202 of the integers f(1), f(2), . . . , f(2014) have a units digit of 1.
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10. Throughout this solution, we use “JB” to represent “jelly bean” or “jelly beans”.
We use “T1” to represent “Type 1 move”, “T2” to represent “Type 2 move”, and so on.
We use “P0” to represent “position 0”, “P1” to represent “position 1”, and so on.
We represent the positions of the JB initially or after a move using an ordered tuple of non-
negative integers representing the number of JB at P0, P1, P2, etc. For example, the tuple
(0, 0, 1, 2, 1) would represent 0 JB at P0, 0 JB at P1, 1 JB at P2, 2 JB at P3, and 1 JB at P4.

(a) To begin, we work backwards from the final state (0, 0, 0, 0, 0, 1).
The only move that could have put 1 JB at P5 is 1 T5.
Undoing this move removes 1 JB from P5 and adds 1 JB at P4 and 1 JB at P3, giving
(0, 0, 0, 1, 1, 0).
The only move that could have put 1 JB at P4 is 1 T4.
Undoing this move removes 1 JB from P4 and adds 1 JB at P2 and 1 JB at P3, giving
(0, 0, 1, 2, 0, 0).
The only moves that could put 2 JB at P3 are 2 T3s.
Undoing these moves removes 2 JB from P3, adds 2 JB at P1 and 2 JB at P2, giving
(0, 2, 3, 0, 0, 0).
The only moves that could put 3 JB at P2 are 3 T2s.
Undoing these moves gives (3, 5, 0, 0, 0, 0).
The only moves that could put 5 JB at P1 are 5 T1s.
Undoing these moves removes 5 JB from P1 and adds 10 JB at P0, giving (13, 0, 0, 0, 0, 0).
Therefore, starting with N = 13 JB at P0 allows Fiona to win the game by making all of
the moves as above in the reverse order.
In particular, from (13, 0, 0, 0, 0, 0), 5 T1s gives (3, 5, 0, 0, 0, 0), then 3 T2s give (0, 2, 3, 0, 0, 0),
then 2 T3s give (0, 0, 1, 2, 0, 0), then 1 T4 gives (0, 0, 0, 1, 1, 0), then 1 T5 gives (0, 0, 0, 0, 0, 1),
as required.

(b) Initial Set-up
First, we note that when Fiona starts with N JB (for some fixed positive integer N), then
the game finishes in at most N − 1 moves (since she eats exactly one JB on each move).
Second, we note that the positions of the JB in the final state as well as at any intermedi-
ate state (that is, after some number of moves) must be in the list P0, P1, . . ., P(N − 1),
since each JB can move at most 1 position to the right on any given move, so no JB can
move more than N − 1 positions to the right in at most N − 1 moves.
This means that, starting with N JB, any state can be described using an N -tuple
(a0, a1, . . . , aN−2, aN−1), where ai represents the number of JB at Pi in that state.

Introduction of Fibonacci Sequence and Important Fact #1 (IF1)
We define the Fibonacci sequence by F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 3.
The initial number of JB (N) and the number of JB at various positions are connected
using the Fibonacci sequence in the following way.
At any state between the starting state (N JB at P0) and the final state, if there are ai
JB at Pi for each i from 0 to N − 1, then

N = a0F2 + a1F3 + · · ·+ aN−2FN + aN−1FN+1 (∗)

This is true because:

• It is true for the starting state, since here (a0, a1, . . . , aN−2, aN−1) = (N, 0, . . . , 0, 0)
and F2 = 1, so the right side of (∗) equals N(1) + 0 or N

• A T1 does not change the value of the right side of (∗): Since a T1 changes the state
(a0, a1, a2, . . . , aN−2, aN−1) to (a0 − 2, a1 + 1, a2, . . . , aN−2, aN−1), the right side of (∗)
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changes from
a0F2 + a1F3 + a2F4 + · · ·+ aN−2FN + aN−1FN+1

to
(a0 − 2)F2 + (a1 + 1)F3 + a2F4 + · · ·+ aN−2FN + aN−1FN+1

which is a difference of −2F2 + F3 = −2(1) + 2 = 0.

• A Ti for i ≥ 2 does not change the value of the right side of (∗): Since a Ti changes
the state (a0, a1, . . . , ai−2, ai−1, ai, . . . , aN−2, aN−1) to

(a0, a1, . . . , ai−2 − 1, ai−1 − 1, ai + 1, . . . , aN−2, aN−1)

the right side of (∗) changes from

a0F2 + a1F3 + · · ·+ ai−2Fi + ai−1Fi+1 + aiFi+2 + · · ·+ aN−2FN + aN−1FN+1

to

a0F2+a1F3+· · ·+(ai−2−1)Fi+(ai−1−1)Fi+1+(ai+1)Fi+2+· · ·+aN−2FN +aN−1FN+1

which is a difference of −Fi − Fi+1 + Fi+2 = 0 since Fi+2 = Fi+1 + Fi.

This tells us that the value of the right side of (∗) starts at N and does not change on any
subsequent move.
Therefore, at any state (a0, a1, . . . , aN−2, aN−1) after starting with N JB at P0, it is true
that

N = a0F2 + a1F3 + · · ·+ aN−2FN + aN−1FN+1 (∗)

To show that there is only one possible final state when Fiona wins the game, we assume
that there are two possible winning final states starting from N JB and show that these
in fact must be the same state.

Important Fact #2 (IF2)
To do this, we prove a property of Fibonacci numbers that will allow us to show that two
sums of three or fewer non-consecutive Fibonacci numbers cannot be equal if the Fibonacci
numbers used in each sum are not the same:

If x, y, z are positive integers with 2 ≤ x < y < z and no pair of x, y, z are
consecutive integers, then Fz < Fy + Fz < Fx + Fy + Fz < Fz+1.

Since each Fibonacci number is a positive integer, then Fz < Fy + Fz < Fx + Fy + Fz, so
we must prove that Fx + Fy + Fz < Fz+1:

Since no two of x, y, z are consecutive and x < y < z, then y < z − 1.
Since y and z are positive integers, then y ≤ z − 2.
Also, x < y − 1 ≤ z − 3.
Since x and z are integers with x < z − 3, then x ≤ z − 4.
Since the Fibonacci sequence is increasing from F2 onwards, then

Fx + Fy + Fz ≤ Fz−4 + Fz−2 + Fz < Fz−3 + Fz−2 + Fz = Fz−1 + Fz = Fz+1

Since there is a “<” in this chain of inequalities and equalities, then we obtain
that Fx + Fy + Fz < Fz+1, as required.
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Completing the Proof
Recall from the statement of the problem that a winning state consists of three or fewer
JB, each at a distinct position and no two at consecutive integer positions.
Suppose that, starting from N JB at P0, in a first winning final state with ad = 1, each
of ab and ac equal to 0 or 1 and all other ai = 0, and in a second winning final state with
aD = 1, each of aB and aC equal to 0 or 1 and all other ai = 0.
From IF1, this gives N = abFb+2 + acFc+2 +Fd+2 and N = aBFB+2 + aCFC+2 +FD+2, and
so abFb+2 + acFc+2 + Fd+2 = aBFB+2 + aCFC+2 + FD+2.
Starting from this last equation, we remove any common Fibonacci numbers from both
sides. (Recall that each term on each side is either 0 or a Fibonacci number, and Fibonacci
numbers on the same side are distinct.)
If there are no Fibonacci numbers remaining on each side, then the winning final states
are the same, as required.
What happens if there are Fibonacci numbers remaining on either side? In this case, there
must be Fibonacci numbers on each side, as otherwise we would have 0 equal to a non-zero
number.
Suppose that the largest Fibonacci number remaining on the LS is Fk and the largest
Fibonacci number remaining on the RS is Fm.
Since we have removed the common elements, then k 6= m, so we may assume that k < m;
since k and m are integers, then k ≤ m− 1.
Note that the RS must be greater than or equal to Fm, since it includes at least Fm.
Since the LS consists of at most three Fibonacci numbers, which are non-consecutive (since
b, c, d are non-consecutive) and the largest of which is Fk, then IF2 tells us that the LS is
less than Fk+1.
Since k + 1 ≤ m, then the LS is less than Fm.
Since the LS is less than Fm and the RS is greater than or equal to Fm, we have a
contradiction, since they are supposed to be equal.
Therefore, our assumption that Fibonacci numbers are left after removing the common
numbers from each side is false.
In other words, the positions of the JB in each of the winning final states are the same,
so there is indeed only one possible winning final state.
Therefore, if Fiona can win the game, then there is only one possible final state.
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(c) From the statement of the problem and IF1, we know that Fiona can win the game starting
with N JB at P0 only if N is equal to the sum of at most three distinct non-consecutive
Fibonacci numbers.
To determine the closest positive integer N to 2014 for which Fiona can win the game,
we can determine the closet positive integer to 2014 that can be written as the sum of at
most three distinct Fibonacci numbers, no two of which are consecutive.
We write out terms in the Fibonacci sequence until we reach a term larger than 2014:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584

We note that 1597 + 377 + 34 = 2008, which is 6 away from 2014. We will show that there
we cannot achieve an answer closer to 2014. That is, we will show that we cannot achieve
any of the integers from 2009 to 2019, inclusive.

Suppose that an integer from 2009 to 2019, inclusive, can be achieved.
The Fibonacci number 2584 cannot be included in our sum, as the sum would be too large.
If our sum includes no Fibonacci number larger than 987, then our sum is at most
987 + 377 + 144 = 1508, which is not large enough.
Therefore, 1597 must be included in a sum equal to an integer in the range 2009 to 2019,
inclusive.
The remaining 0, 1 or 2 Fibonacci numbers must have a sum in the range 2009−1597 = 412
to 2019− 1597 = 422, inclusive.
No Fibonacci number larger than 377 can be used, otherwise the remaining sum would be
too large.
If the remaining sum uses no Fibonacci number larger than 233, the sum is at most
233 + 89 = 322, which is not in the desired range.
Therefore, 377 must be included in the remaining sum.
The remaining 0 or 1 Fibonacci numbers must have a sum in the range 412− 377 = 35 to
422− 377 = 45, inclusive.
There is no Fibonacci number in this range, so we cannot make a sum of at most three
distinct, non-consecutive numbers that is closer to 2014 than 2008.

Note that 2008 = 1597 + 377 + 34. Since F9 = 34, F14 = 377 and F17 = 1597, the corre-
sponding winning position would be 1 JB at each of P7, P12 and P15.
To complete our proof, we must show that we can actually achieve this final state:

We start with the final state consisting of 1 JB at each of P7, P12 and P15 and
play the game backwards as we did in (a).
Since there is 1 JB at P15, it must have come from a T15.
Undoing this move, we obtain a state consisting of 1 JB at each of P7, P12, P13
and P14. Note that the rightmost JB is now at P14.
Since there is 1 JB at P14, it must have come from a T14.
We undo this move and continue to undo moves that remove a JB from the
rightmost position remaining at each step. This process will eventually move all
of the JB back to P0.
To win the game starting with N = F9 + F14 + F17, Fiona then uses all of these
moves in the opposite order, in a similar way to the method in (a).
Thus, Fiona can achieve the winning final state of 1 JB at each of P7, P12 and
P15.

Therefore, if N = F9 + F14 + F17, then Fiona can win the game.
Thus, N = 2008 is the closest integer to 2014 for which Fiona can start with N JB at P0
and win the game.


