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1. (a) The expression
√

113 + x is an integer whenever 113 + x is a perfect square.
To find the smallest positive integer x for which 113 + x is a perfect square, we find the
smallest perfect square larger than 113.
Since 102 = 100 and 112 = 121, then this perfect square must be 121.
Therefore, 113 + x = 121 or x = 8.

(b) The average of 3 and 11 is 1
2
(3 + 11) = 7. Thus a = 7.

Using this with the given information, we see that the average of 7 and b is 11.
Therefore, 1

2
(7 + b) = 11 or 7 + b = 22 and so b = 15.

(Alternatively, we could note that since 7 is 4 less than 11 (the average), then b must be
4 more than 11, so b = 11 + 4 = 15.)

(c) Let c be Charlie’s age in years and b be Bella’s age in years.
From the first sentence, c = 30 + b.
From the second sentence, c = 6b.
Combining these, we obtain 6b = 30 + b or 5b = 30, and so b = 6.
Since c = 30 + b, then c = 36, and so Charlie’s age is 36.

2. (a) Since
21

x
=

7

y
, then 21 =

7x

y
or

x

y
=

21

7
= 3.

(b) Solution 1
Since

1

3
≈ 0.3333

1

4
= 0.25

1

5
= 0.2

1

6
≈ 0.1667

then
1

5
< 0.2013 and 0.2013 <

1

4
, so n must equal 4.

(We should note as well that
1

n
decreases as n increases, so this is the only integer value

of n that works.)

Solution 2

Since
1

n+ 1
< 0.2013, then n+ 1 >

1

0.2013
or n >

1

0.2013
− 1 ≈ 3.9677.

Since
1

n
> 0.2013, then n <

1

0.2013
≈ 4.9677.

Since n is a positive integer

∗ that is smaller than a number that is approximately 4.9677, and

∗ that is larger than a number that is approximately 3.9677,

then n = 4.

(c) Since AH is perpendicular to BC, then the area of 4ABC equals 1
2
(BC)(AH).

Since we are told that this area equals 84 and AH = 8, then 84 = 1
2
(BC)(8) or 4 ·BC = 84

or BC = 21.
Also, since 4AHB is right-angled at H, then by the Pythagorean Theorem,

BH =
√
AB2 − AH2 =

√
102 − 82 =

√
36 = 6

since BH > 0. (We could also have recognized two sides of a 6-8-10 right-angled triangle.)
Since BC = 21 and BH = 6, then HC = BC −BH = 21− 6 = 15.
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Since 4AHC is right-angled at H, then by the Pythagorean Theorem,

AC =
√
AH2 +HC2 =

√
82 + 152 =

√
289 = 17

since AC > 0.
Finally, the perimeter of 4ABC equals AB +BC +AC or 10 + 21 + 17, which equals 48.

3. (a) The parity of an integer is whether it is even or odd.
Since the Fibonacci sequence begins 1, 1, 2, 3, 5, 8, 13, 21, . . ., then the parities of the first
eight terms are Odd, Odd, Even, Odd, Odd, Even, Odd, Odd.
In the sequence, if x and y are consecutive terms, then the next term is x+ y.
In general, suppose that x and y are integers.
If x is even and y is even, then x+ y is even. If x is even and y is odd, then x+ y is odd.
If x is odd and y is even, then x+ y is odd. If x is odd and y is odd, then x+ y is even.
Therefore, the parities of two consecutive terms x and y in the Fibonacci sequence deter-
mine the parity of the following term x+ y.
Also, once there are two consecutive terms whose parities match the parities of two earlier
consecutive terms in the sequence, then the parities will repeat in a cycle.
In particular, the parities of the fourth and fifth terms (Odd, Odd) are the same as the
parities of the first and second terms (Odd, Odd).
Therefore, the parities in the sequence repeat the cycle Odd, Odd, Even.
This cycle has length 3.
Therefore, the 99th term in the Fibonacci sequence ends one of these cycles, since 99 is a
multiple of 3.
In particular, the 99th term ends the 33rd cycle.
Each cycle contains two odd terms.
Therefore, the first 99 terms in the sequence include 2× 33 = 66 odd terms.
Finally, the 100th term in the sequence begins a new cycle, so is odd.
Therefore, the first 100 terms include 66 + 1 = 67 odd terms.

(b) Suppose that the first term in the given sequence is a and the common difference is d.
Then the first four terms are a, a+ d, a+ 2d, a+ 3d.
From the given information, a+ (a+ 2d) = 6 and (a+ d) + (a+ 3d) = 20.
The first equation simplifies to 2a+ 2d = 6 or a+ d = 3.
The second equation simplifies to 2a+ 4d = 20 or a+ 2d = 10.
Therefore, (a+ 2d)− (a+ d) = 10− 3 or d = 7.
Since a+ d = 3 and d = 7, then a = −4.
Therefore, the tenth term in the sequence is a+ 9d = −4 + 9(7) = 59.

4. (a) There are five odd digits: 1, 3, 5, 7, 9.
We consider the positive integers less than 1000 in three sets: those with one digit, those
with two digits, and those with three digits.
There are 5 positive one-digit integers with one odd digit (namely 1, 3, 5, 7, 9).
Consider the two-digit positive integers with only odd digits.
Such an integer has the form XY where X and Y are digits.
There are five possibilities for each of X and Y (since each must be odd).
Therefore, there are 5× 5 = 25 two-digit positive integers with only odd digits.
Consider the three-digit positive integers with only odd digits.
Such an integer has the form XY Z where X, Y and Z are digits.
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There are five possibilities for each of X, Y and Z (since each must be odd).
Therefore, there are 5× 5× 5 = 125 three-digit positive integers with only odd digits.
In total, there are 5 + 25 + 125 = 155 positive integers less than 1000 with only odd digits.

(b) Combining the two terms on the right side of the second equation, we obtain
4

7
=
b+ a

ab
.

Since a+ b = 16, then
4

7
=

16

ab
or ab =

16(7)

4
= 28.

Therefore, we have a+ b = 16 and ab = 28.
From the first equation, b = 16− a.
Substituting into the second equation, we obtain a(16− a) = 28 or 16a− a2 = 28, which
gives a2 − 16a+ 28 = 0.
Factoring, we obtain (a− 14)(a− 2) = 0.
Therefore, a = 14 or a = 2.
If a = 14, then b = 16− a = 2.
If a = 2, then b = 16− a = 14.
Therefore, the two solutions are (a, b) = (14, 2), (2, 14).

(We note that since
1

2
+

1

14
=

7

14
+

1

14
=

8

14
=

4

7
, then both of these pairs are actually

solutions to the original system of equations.)

5. (a) We make a table of the 36 possible combinations of rolls and the resulting sums:

2 3 5 7 11 13
2 4 5 7 9 13 15
3 5 6 8 10 14 16
5 7 8 10 12 16 18
7 9 10 12 14 18 20
11 13 14 16 18 22 24
13 15 16 18 20 24 26

Of the 36 entries in the table, 6 are prime numbers (two entries each of 5, 7 and 13).
Therefore, the probability that the sum is a prime number is 6

36
or 1

6
.

(Note that each sum is at least 4 and so must be odd to be prime. Since odd plus odd
equals even, then the only possibilities that really need to be checked are even plus odd
and odd plus even (that is, the first row and first column of the table).)

(b) First, we find the coordinates of V .
To do this, we use the given equation for the parabola and complete the square:

y = −x2+4x+1 = −(x2−4x−1) = −(x2−4x+22−22−1) = −((x−2)2−5) = −(x−2)2+5

Therefore, the coordinates of the vertex V are (2, 5).
Next, we find the coordinates of A and B.
Note that A and B are the points of intersection of the line with equation y = −x+ 1 and
the parabola with equation y = −x2 + 4x+ 1.
We equate y-values to obtain −x+ 1 = −x2 + 4x+ 1 or x2 − 5x = 0 or x(x− 5) = 0.
Therefore, x = 0 or x = 5.
If x = 0, then y = −x+ 1 = 1, and so A (which is on the y-axis) has coordinates (0, 1).
If x = 5, then y = −x+ 1 = −4, and so B has coordinates (5,−4).
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We now have the points V (2, 5), A(0, 1), B(5,−4).
This gives

AV 2 = (0− 2)2 + (1− 5)2 = 20

BV 2 = (5− 2)2 + (−4− 5)2 = 90

AB2 = (0− 5)2 + (1− (−4))2 = 50

and so AV 2 +BV 2 − AB2 = 20 + 90− 50 = 60.

6. (a) Since ABC is a quarter of a circular pizza with centre A and radius 20 cm, then
AC = AB = 20 cm.
We are also told that ∠CAB = 90◦ (one-quarter of 360◦).
Since ∠CAB = 90◦ and A, B and C are all on the circumference of the circle, then CB is
a diameter of the pan. (This is a property of circles: if X, Y and Z are three points on a
circle with ∠ZXY = 90◦, then Y Z must be a diameter of the circle.)
Since 4CAB is right-angled and isosceles, then CB =

√
2AC = 20

√
2 cm.

Therefore, the radius of the circular plate is 1
2
CB or 10

√
2 cm.

Thus, the area of the circular pan is π(10
√

2 cm)2 = 200π cm2.
The area of the slice of pizza is one-quarter of the area of a circle with radius 20 cm, or
1
4
π(20 cm)2 = 100π cm2.

Finally, the fraction of the pan that is covered is the area of the slice of pizza divided by

the area of the pan, or
100π cm2

200π cm2
=

1

2
.

(b) Suppose that the length of AF is x m.
Since the length of AB is 8 m, then the length of FB is (8− x) m.
Since 4MAF is right-angled and has an angle of 60◦, then it is 30◦-60◦-90◦ triangle.
Therefore, MF =

√
3AF , since MF is opposite the 60◦ angle and AF is opposite the 30◦

angle.
Thus, MF =

√
3x m.

Since MP = 2 m, then PF = MF −MP = (
√

3x− 2) m.
We can now look at 4BFP which is right-angled at F .
We have

tan θ =
PF

FB
=

(
√

3x− 2) m

(8− x) m
=

√
3x− 2

8− x

Therefore, (8− x) tan θ =
√

3x− 2 or 8 tan θ + 2 =
√

3x+ (tan θ)x.

This gives 8 tan θ + 2 = x(
√

3 + tan θ) or x =
8 tan θ + 2

tan θ +
√

3
.

Finally, MF =
√

3x =
8
√

3 tan θ + 2
√

3

tan θ +
√

3
m.
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7. (a) Beginning with the given equation, we have

1

cosx
− tanx = 3

1

cosx
− sinx

cosx
= 3

1− sinx = 3 cosx (since cos x 6= 0)

(1− sinx)2 = 9 cos2 x (squaring both sides)

1− 2 sinx+ sin2 x = 9(1− sin2 x)

10 sin2 x− 2 sinx− 8 = 0

5 sin2 x− sinx− 4 = 0

(5 sinx+ 4)(sinx− 1) = 0

Therefore, sin x = −4

5
or sin x = 1.

If sinx = 1, then cosx = 0 and tan x is undefined, which is inadmissible in the original
equation.

Therefore, sin x = −4

5
.

(We can check that if sinx = −4

5
, then cosx = ±3

5
and the possibility that cosx =

3

5

satisfies the original equation, since in this case
1

cosx
=

5

3
and tanx = −4

3
and the

difference between these fractions is 3.)

(b) Since f(x) = ax+b, we can determine an expression for g(x) = f−1(x) by letting y = f(x)
and to obtain y = ax + b. We then interchange x and y to obtain x = ay + b which we

solve for y to obtain ay = x− b or y =
x

a
− b

a
.

Therefore, f−1(x) =
x

a
− b

a
.

Note that a 6= 0. (This makes sense since the function f(x) = b has a graph which is a
horizontal line, and so cannot be invertible.)

Therefore, the equation f(x) − g(x) = 44 becomes (ax + b) −
(
x

a
− b

a

)
= 44 or(

a− 1

a

)
x+

(
b+

b

a

)
= 44 = 0x+ 44, and this equation is true for all x.

We can proceed in two ways.

Method #1: Comparing coefficients
Since the equation (

a− 1

a

)
x+

(
b+

b

a

)
= 0x+ 44

is true for all x, then the coefficients of the linear expression on the left side must match
the coefficients of the linear expression on the right side.

Therefore, a− 1

a
= 0 and b+

b

a
= 44.

From the first of these equations, we obtain a =
1

a
or a2 = 1, which gives a = 1 or a = −1.

If a = 1, the equation b+
b

a
= 44 becomes b+ b = 44, which gives b = 22.
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If a = −1, the equation b+
b

a
= 44 becomes b− b = 44, which is not possible.

Therefore, we must have a = 1 and b = 22, and so f(x) = x+ 22.

Method #2: Trying specific values for x
Since the equation (

a− 1

a

)
x+

(
b+

b

a

)
= 0x+ 44

is true for all values of x, then it must be true for any specific values of x that we choose.

Choosing x = 0, we obtain 0 +

(
b+

b

a

)
= 44 or b+

b

a
= 44.

Choosing x = b, we obtain

(
a− 1

a

)
b+

(
b+

b

a

)
= 44 or ab+ b = 44.

We can rearrange the first of these equations to get
ab+ b

a
= 44.

Using the second equation, we obtain
44

a
= 44 or a = 1.

Since a = 1, then ab+ b = 44 gives 2b = 44 or b = 22.
Thus, f(x) = x+ 22.

In summary, the only linear function f for which the given equation is true for all x
is f(x) = x+ 22.

8. (a) First, we factor the left side of the given equation to obtain a(a2 + 2b) = 2013.
Next, we factor the integer 2013 as 2013 = 3× 671 = 3× 11× 61. Note that each of 3, 11
and 61 is prime, so we can factor 2013 no further. (We can find the factors of 3 and 11
using tests for divisibility by 3 and 11, or by systematic trial and error.)
Since 2013 = 3× 11× 61, then the positive divisors of 2013 are

1, 3, 11, 33, 61, 183, 671, 2013

Since a and b are positive integers, then a and a2 + 2b are both positive integers.
Since a and b are positive integers, then a2 ≥ a and 2b > 0, so a2 + 2b > a.
Since a(a2 + 2b) = 2013, then a and a2 + 2b must be a divisor pair of 2013 (that is, a pair
of positive integers whose product is 2013) with a < a2 + 2b.
We make a table of the possibilities:

a a2 + 2b 2b b
1 2013 2012 1006
3 671 662 331
11 183 62 31
33 61 −1028 N/A

Note that the last case is not possible, since b must be positive.
Therefore, the three pairs of positive integers that satisfy the equation are (1, 1006),
(3, 331), (11, 31).
(We can verify by substitution that each is a solution of the original equation.)
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(b) Solution 1
We successively manipulate the given equation to produce equivalent equations:

log2(2
x−1 + 3x+1) = 2x− log2(3

x)

log2(2
x−1 + 3x+1) + log2(3

x) = 2x

log2((2
x−1 + 3x+1)3x) = 2x (using log2A+ log2B = log2AB)

(2x−1 + 3x+1)3x = 22x (exponentiating both sides)

2−12x3x + 313x3x = 22x

1
2
· 2x3x + 3 · 32x = 22x

2x3x + 6 · 32x = 2 · 22x (multiplying by 2)

2x3x + 6 · (3x)2 = 2 · (2x)2

Next, we make the substitution a = 2x and b = 3x.
This gives ab+ 6b2 = 2a2 or 2a2 − ab− 6b2 = 0.
Factoring, we obtain (a− 2b)(2a+ 3b) = 0.
Therefore, a = 2b or 2a = −3b.
Since a > 0 and b > 0, then a = 2b which gives 2x = 2 · 3x.
Taking logs of both sides, we obtain x log 2 = log 2 + x log 3 and so x(log 2− log 3) = log 2

or x =
log 2

log 2− log 3
.

Solution 2
We successively manipulate the given equation to produce equivalent equations:

log2(2
x−1 + 3x+1) = 2x− log2(3

x)

log2(2
x−1 + 3x+1) + log2(3

x) = 2x

log2((2
x−1 + 3x+1)3x) = 2x (using log2A+ log2B = log2AB)

(2x−1 + 3x+1)3x = 22x (exponentiating both sides)

2−12x3x + 313x3x = 22x

1
2
· 2x3x + 3 · 32x = 22x

2x3x + 6 · 32x = 2 · 22x (multiplying by 2)

2x3x2−2x + 6 · 32x2−2x = 2 (dividing both sides by 22x 6= 0)

2−x3x + 6 · 32x2−2x = 2(
3
2

)x
+ 6

(
3
2

)2x
= 2

Next, we make the substitution t =
(
3
2

)x
, noting that

(
3
2

)2x
=
((

3
2

)x)2
= t2.

Thus, we obtain the equivalent equations

t+ 6t2 = 2

6t2 + t− 2 = 0

(3t+ 2)(2t− 1) = 0

Therefore, t = −2
3

or t = 1
2
.

Since t =
(
3
2

)x
> 0, then we must have t =

(
3
2

)x
= 1

2
.

Thus,

x = log3/2(1/2) =
log(1/2)

log(3/2)
=

log 1− log 2

log 3− log 2
=

− log 2

log 3− log 2
=

log 2

log 2− log 3



2013 Euclid Contest Solutions Page 9

9. (a) Suppose that the parallel line segments EF and WX are a distance of x apart.
This means that the height of trapezoid EFXW is x.
Since the side length of square EFGH is 10 and the side length of square WXY Z is 6,
then the distance between parallel line segments ZY and HG is 10− 6− x or 4− x.
Recall that the area of a trapezoid equals one-half times its height times the sum of the
lengths of the parallel sides.
Thus, the area of trapezoid EFXW is 1

2
x(EF +WX) = 1

2
x(10 + 6) = 8x.

Also, the area of trapezoid GHZY is 1
2
(4− x)(HG+ ZY ) = 1

2
(4− x)(10 + 6) = 32− 8x.

Therefore, the sum of the areas of trapezoids EFXW and GHZY is 8x+ (32− 8x) = 32.
This sum is a constant and does not depend on the position of the inner square within
the outer square, as required.

(b) We begin by “boxing in” square PQRS by drawing horizontal and vertical lines through
its vertices to form rectangle WXY Z, as shown. (Because the four quadrilaterals ABQP ,
BCRQ, CDSR, and DAPS are convex, there will not be any configurations that look
substantially different from this the diagram below.) We also label the various areas.

P
Q

R
S

A B

CD

W
X

Y
Z

a

b

c

d

e
f

g
h

r

m
n

s

Since WX is parallel to AB, then quadrilateral ABXW is a trapezoid. Similarly, quadri-
laterals BCYX, CDZY , and DAWZ are trapezoids.
We use the notation |ABQP | to denote the area of quadrilateral ABQP , and similar no-
tation for other areas.
Suppose that the side length of square ABCD is x and the side length of square PQRS
is y.
Also, we let ∠WPQ = θ.
Since each of 4WPQ, 4XQR, 4Y RS, and 4ZSP is right-angled and each of the four
angles of square PQRS is 90◦, then ∠WPQ = ∠XQR = ∠Y RS = ∠ZSP = θ. This is
because, for example,

∠XQR = 180◦−∠PQR−∠WQP = 90◦−(180◦−∠PWQ−∠WPQ) = 90◦−(90◦−θ) = θ

This fact, together with the fact that PQ = QR = RS = SP = y, allows us to conclude
that the four triangles 4WPQ, 4XQR, 4Y RS, and 4ZSP are congruent.
In particular, this tells us

∗ the four areas labelled e, f , g and h are equal (that is, e = f = g = h),

∗ PZ = QW = RX = SY = y sin θ, and

∗ WP = XQ = Y R = ZS = y cos θ.
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Combining these last two facts tells us that WZ = XW = Y X = ZY , since, for example,
WZ = WP + PZ = ZS + SY = ZY . In other words, WXY Z is a square, with side
length z, say.

Next, we show that (a+ r) + (c+ n) is equal to (b+m) + (d+ s).
Note that the sum of these two quantities is the total area between square ABCD and
square WXY Z, so equals x2 − z2.
Thus, to show that the quantities are equal, it is enough to show that (a + r) + (c + n)
equals 1

2
(x2 − z2).

Let the height of trapezoid ABXW be k and the height of trapezoid ZY CD be l.

Then |ABXW | = a+ r = 1
2
k(AB +WX) = 1

2
k(x+ z).

Also, |ZY CD| = c+ n = 1
2
l(DC + ZY ) = 1

2
l(x+ z).

Since AB, WX, ZY , and DC are parallel, then the sum of the heights of trapezoid
ABXW , square WXY Z, and trapezoid ZY CD equals the height of square ABCD, so
k + z + l = x, or k + l = x− z.
Therefore,

(a+ r) + (c+ n) = 1
2
k(x+ z) + 1

2
l(x+ z) = 1

2
(x+ z)(k+ l) = 1

2
(x+ z)(x− z) = 1

2
(x2− z2)

as required.
Therefore, (a+ r) + (c+ n) = (b+m) + (d+ s). We label this equation (∗).
Next, we show that r + n = m+ s.
Note that r = |4QXB|. This triangle can be viewed as having base QX and height equal
to the height of trapezoid ABXW , or k.
Thus, r = 1

2
(y cos θ)k.

Note that n = |4SZD|. This triangle can be viewed as having base SZ and height equal
to the height of trapezoid ZY CD, or l.
Thus, n = 1

2
(y cos θ)l.

Combining these facts, we obtain

n+ r = 1
2
(y cos θ)k + 1

2
(y cos θ)l = 1

2
y cos θ(k + l) = 1

2
y cos θ(x− z)

We note that this sum depends only on the side lengths of the squares and the angle of
rotation of the inner square, so is independent of the position of the inner square within
the outer square.
This means that we can repeat this analysis to obtain the same expression for m+ s.
Therefore, n+ r = m+ s. We label this equation (∗∗).
We subtract (∗)− (∗∗) to obtain a+ c = b+ d.
Finally, we can combine all of this information:

(|ABQP |+ |CDSR|)− (|BCRQ|+ |APSD|)
= (a+ e+ s+ c+ g +m)− (b+ f + r + d+ h+ n)

= ((a+ c)− (b+ d)) + ((m+ s)− (n+ r)) + ((e+ g)− (f + h))

= 0 + 0 + 0

since a+ c = b+ d and n+ r = m+ s and e = f = g = h.
Therefore, |ABQP |+ |CDSR| = |BCRQ|+ |APSD|, as required.
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10. In each part, we use “partition” to mean “multiplicative partition”. We also call the numbers
being multiplied together in a given partition the “parts” of the partition.

(a) We determine the multiplicative partitions of 64 by considering the number of parts in the
various partitions. Note that 64 is a power of 2 so any divisor of 64 is also a power of 2.
In each partition, since the order of parts is not important, we list the parts in increasing
order to make it easier to systematically find all of these.

∗ One part. There is one possibility: 64.

∗ Two parts. There are three possibilities: 64 = 2× 32 = 4× 16 = 8× 8.

∗ Three parts. We start with the smallest possible first and second parts. We keep the
first part fixed while adjusting the second and third parts. We then increase the first
part and repeat.
We get: 64 = 2× 2× 16 = 2× 4× 8 = 4× 4× 4.

∗ Four parts. A partition of 64 with four parts must include at least two 2s, since if it
didn’t, it would include at least three parts that are at least 4, and so would be too
large. With two 2s, the remaining two parts have a product of 16.
We get: 64 = 2× 2× 2× 8 = 2× 2× 4× 4.

∗ Five parts. A partition of 64 with five parts must include at least three 2s, since if it
didn’t, it would include at least three parts that are at least 4, and so would be too
large. With three 2s, the remaining two parts have a product of 8.
We get: 64 = 2× 2× 2× 2× 4.

∗ Six parts. Since 64 = 26, there is only one possibility: 64 = 2× 2× 2× 2× 2× 2.

Therefore, P (64) = 1 + 3 + 3 + 2 + 1 + 1 = 11.

(b) First, we note that 1000 = 103 = (2 · 5)3 = 2353.
We calculate the value of P (p3q3) for two distinct prime numbers p and q. It will turn out
that this value does not depend on p and q. This value will be the value of P (1000), since
1000 has this form of prime factorization.

Let n = p3q3 for distinct prime numbers p and q.
The integer n has three prime factors equal to p.
In a given partition, these can be all together in one part (as p3), can be split between
two different parts (as p and p2), or can be split between three different parts (as p, p and
p). There are no other ways to divide up three divisors of p.
Similarly, n has three prime factors equal to q which can be divided in similar ways.
We determine P (p3q3) by considering the possible combination of the number of parts
divisible by p and the number of parts divisible by q and counting partitions in each case.
In other words, we complete the following table:

Number of parts
divisible by p

1 2 3
Number of parts 1
divisible by q 2

3

We note that the table is symmetric, since the factors of p and q are interchangeable.
We proceed to consider cases, considering only those on the top left to bottom right
diagonal and and those below this diagonal in the table.
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Case 1: One part divisible by p, one part divisible by q
The partition must be p3q3 (n itself) or p3 × q3.
There are two partitions in this case.

Case 2: One part divisible by p, two parts divisible by q
The three factors of p occur together as p3. The three factors of q occur as q and q2.
The p3 can occur in one of the parts divisible by q or not.
This gives partitions p3 × q × q2 and p3q × q2 and q × p3q2.
There are three partitions in this case. Similarly, there are three partitions with one part
divisible by q and two parts divisible by p.

Case 3: One part divisible by p, three parts divisible by q
The three factors of p occur together as p3. The three factors of q occur as q, q and q.
The p3 can occur in one of the parts divisible by q or not.
This gives partitions p3 × q × q × q and p3q × q × q.
(Note that the three divisors of q are interchangeable so p3 only needs to be placed with
one of them.)
There are two partitions in this case. Similarly, there are two partitions with one part
divisible by q and three parts divisible by p.

Case 4: Two parts divisible by p, two parts divisible by q
The three factors of p occur as p and p2. The three factors of q occur as q and q2.
Each of p and p2 can occur in one of the parts divisible by q or not.
If no part is a multiple of both p and q, we have one partition: p× p2 × q × q2.
If one part is a multiple of both p and q, there are two choices for which power of p to
include in this part and two choices for which power of q to include. (There is no choice
for the remaining parts.) Thus, there are 2× 2 = 4 such partitions:

p2q2 × p× q pq2 × p2 × q p2q × p× q2 pq × p2 × q2

If two parts are a multiple of both p and q, there are two ways to choose the power of p
in the part containing just q, so there are two such partitions: pq × p2q2 and p2q × pq2.
There are seven partitions in this case.

Case 5: Two parts divisible by p, three parts divisible by q
The three factors of p occur as p and p2. The three factors of q occur as q, q and q.
Each of p and p2 can occur in one of the parts divisible by q or not.
If no part is a multiple of both p and q, we have one partition: p× p2 × q × q × q.
If one part is a multiple of both p and q, there are two choices for which power of p to
include in this part (since all powers of q are identical).
Thus, there are 2 such partitions: p2q × p× q × q and pq × p2 × q × q.
If two parts are a multiple of both p and q, there is one partition, since all of the powers
of q are identical: pq × p2q × q.
There are four partitions in this case. Similarly, there are four partitions with two parts
divisible by q and three parts divisible by p.

Case 6: Three parts divisible by p, three parts divisible by q
The three factors of p as p, p and p. The three factors of q appear as q, q and q.
Here, the number of parts in the partition that are multiples of both p and q can be 0,
1, 2 or 3. Since all of the powers of p and q are identical, the partitions are completely
determined by this and are

p× p× p× q × q × q p× p× pq × q × q p× pq × pq × q pq × pq × pq

There are four partitions in this case.



2013 Euclid Contest Solutions Page 13

Finally, we complete the table:

Number of parts
divisible by p

1 2 3
Number of parts 1 2 3 2
divisible by q 2 3 7 4

3 2 4 4

Adding the entries in the table, we obtain P (p3q3) = 31.
Thus, P (1000) = 31.

(c) As in (b), the value of P (n) depends only on the structure of the prime factorization of n,
not on the actual primes in the factorization.
Therefore, P (4× 5m) = P (22 × 5m) = P (p2qm) for any distinct primes p and q.
Therefore, P (4× 5m) = P (p2qm) = P (52 × 2m) = P (25× 2m).
We count the number of multiplicative partitions of N = 52×2m by considering the place-
ment of the 2s and 5s among the parts of the partitions.
Since N has only two factors of 5, these can occur in the same part, or in different parts.
Note that every factor of N is a product is of the form 5j2k for some integers j and k with
0 ≤ j ≤ 2 and 0 ≤ k ≤ m.

We first count the number of partitions where the two factors of 5 occur in the same
part.
Consider one such partition.
In this partition, the part containing the two 5s will be of the form 522k for some integer
k with 0 ≤ k ≤ m.
Thus, this partition will be of the form 522k × P , where P is a partition of 2m−k (the
remaining factors in N).
Since the order of parts does not matter, there are P (2m−k) such partitions P , and so this
number of partitions of N of this form.
Since k ranges from 0 to m, then the number of partitions where the two 5s occur in the
same part equals

P (2m) + P (2m−1) + · · ·+ P (21) + P (20)

Next, we count the number of partitions where the two factors of 5 occur in different parts.
Consider one such partition.
In this partition, the parts containing the two 5s will be of the form 5× 2a and 5× 2b for
some integers a and b with 0 ≤ a, b ≤ m and a+ b ≤ m.
Since the order of the parts within a partition does not matter, we can restrict a and
b further by requiring that 0 ≤ a ≤ b ≤ m and a + b ≤ m to avoid double-counting
partitions.
Thus, this partition will be of the form (5× 2a)× (5× 2b)× P , where P is a partition of
2m−a−b (the remaining factors in N).
Since the order of parts does not matter, there are P (2m−a−b) such partitions P , and so
this number of partitions of N of this form.

To determine the total number of partitions in this case, we need to add up P (2m−a−b)
over all possible pairs (a, b) satisfying 0 ≤ a ≤ b ≤ m and a+ b ≤ m.
To do this, we focus on the possible values of s = a + b and count the number of pairs
(a, b) that give this sum.
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If s = a+ b = 0, there is one pair (a, b), namely (a, b) = (0, 0).
If s = a+ b = 1, there is one pair (a, b), namely (a, b) = (0, 1).
If s = a+ b = 2, there are two pairs (a, b), namely (a, b) = (0, 2), (1, 1).
In general, if s is even, then 1

2
s is an integer and so there are (1

2
s+ 1) pairs (a, b), namely

(0, s), (1, s− 1), (2, s− 2), . . . , (1
2
s− 1, 1

2
s+ 1), (1

2
s, 1

2
s)

Any larger value of a would give a value of b smaller than a.
In general, if s is odd, then 1

2
s− 1

2
is an integer and so there are (1

2
s− 1

2
) + 1 = (1

2
s+ 1

2
)

pairs (a, b), namely

(0, s), (1, s− 1), (2, s− 2), . . . , (1
2
s− 3

2
, 1
2
s+ 3

2
), (1

2
s− 1

2
, 1
2
s+ 1

2
)

Any larger value of a would give a value of b smaller than a.
To summarize, if s = a + b is even, there are (1

2
s + 1) pairs (a, b) and if s = a + b is odd,

there are (1
2
s+ 1

2
) pairs (a, b).

Thus, as s increases from 0, the number of pairs (a, b) gives the sequence 1, 1, 2, 2, 3, 3, . . ..
The number in this sequence corresponding to the value of a+ b gives the number of times
that P (2m−a−b) should be included in the count of the total number of partitions in this
case.
In other words, if a + b = 0, there are 1 × P (2m) partitions, if a + b = 1, there are
1× P (2m−1) partitions, if a+ b = 2, there are 2× P (2m−2) partitions, etc.
We can rewrite this more compactly to say that for a given s, the number of pairs (a, b)

is

⌊
s+ 2

2

⌋
(where bxc is the greatest integer less than or equal to x) and so the number

of partitions is

⌊
s+ 2

2

⌋
× P (2m−s).

Therefore, the total number of partitions of N in this case is

1× P (2m) + 1× P (2m−1) + 2× P (2m−2) + 2× P (2m−3) + · · ·+
⌊
s+ 2

2

⌋
× P (2m−s) + · · ·

+
⌊m

2

⌋
× P (21) +

⌊
m+ 2

2

⌋
× P (20)

Combining the two cases and adding the corresponding expressions for the number of
partitions, we obtain that the total number of partitions is

2×P (2m)+2×P (2m−1)+3×P (2m−2)+3×P (2m−3)+· · ·+
(

1 +

⌊
s+ 2

2

⌋)
×P (2m−s)+· · ·

+

(
1 +

⌊
m+ 1

2

⌋)
× P (21) +

(
1 +

⌊
m+ 2

2

⌋)
× P (20)

and so the desired sequence is

a0 = 2

a1 = 2

a2 = 3

a3 = 3
...

as = 1 +

⌊
s+ 2

2

⌋
...


