

2016 Stanford International Math Tournament (High School) August, 2016 Stanford University

Individual Questions Each Question is worth 15 points. Time Limit 90 minutes. Calculators are **PROHIBITED.**

Name (Print):_____ Grade: _____

1.	Let $(x^{2015} + x^{2017} + 2)^{2016} = a_0 + a_1 x + \dots + a_n x^n$.
	What is the value of $a_0 - \frac{a_1}{2} - \frac{a_2}{2} + a_3 - \frac{a_4}{2} - \frac{a_5}{2} + a_6 - \dots$?
	Answer:
2.	What are all the ordered pairs of real numbers (x, y) that satisfy the system of equations below?
	$\begin{cases} x - y = 2016 \end{cases}$
	$\begin{cases} x - y = 2016 \\ \frac{x + y}{2} - \sqrt{xy} = 72 \end{cases}$
	Answer:
3.	What are all the real values for x that satisfy $\frac{2x}{7x^2 - 5x - 17} + \frac{13x}{7x^2 + x - 17} = 6$?
	Answer:
4.	Let $f(x) = \frac{1}{1 + 2016^{2x-1}}$. What is the value
	of $f(\frac{1}{2017}) + f(\frac{2}{2017}) + f(\frac{3}{2017}) + \dots + f(\frac{2016}{2017})$?
	Answer:
5.	What are all possible <i>x</i> -coordinates of points on curve $r = 2(1 + \sin\theta)$
	(interval [0, 2π]) whose y-coordinates is $\frac{\sqrt{5}+1}{4}$?

Answer:

Write the fully reduced form of the expression below.

$$\frac{\sum_{j=1}^{224} \sin(j*\frac{\pi}{900})}{\sum_{i=1}^{224} \cos(i*\frac{\pi}{900})}$$

The side-lengths of \triangle ABC are 3, 3, and 2. What is the positive difference between the diameter of its circumcircle (circumscribed circle) and the diameter of its incircle (inscribed circle)?

Answer:

a, b, c, d, and e, not necessary distinct, are all single digit numbers from 0 to 9, inclusive, such that a + b + c + d + e = 37.

How many different ways can the values of a, b, c, d, and e be? For example, one possible way is (a, b, c, d, e) = (9, 8, 7, 6, 7).

Answer: _____

Let a, b, and c be non-zero complex numbers, such that

$$a - \frac{1}{b} = n - 2$$

$$b - \frac{1}{b} = n$$

$$b - \frac{1}{c} = n$$

$$c - \frac{1}{a} = n + 2$$

What is the value of $abc - \frac{1}{abc}$ in terms of n?

Answer:

10. What are all the real values for x that satisfy $x^2 + \frac{9x^2}{(x+3)^2} = 16$?

Answer: _____